Skip to main content
Log in

Representing urban areas within operational numerical weather prediction models

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new parametrization for the surface energy balance of urban areas is presented. It is shown that this new method can represent some of the important urban phenomena, such as an urban heat island and the occurrence of a near-neutral nocturnal boundary layer with associated positive turbulent heat fluxes, unlike the traditional method for representing urban areas within operational numerical weather prediction (NWP) models. The basis of the new parametrization is simple and can be applied easily within an operational NWP model. Also, it has no additional computational expense compared to the traditional scheme and is hence applicable for operational forecasting requirements. The results show that the errors for London within the Met Office operational mesoscale model have been significantly reduced since the new scheme was introduced. The bias and root-mean-square (rms) errors have been approximately halved, with the rms error now similar to the model as a whole. The results also show that a seasonal cycle still exists in the model errors, but it is suggested that this may be caused by anthropogenic heat sources that are neglected in the urban scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. C. M. Beljaars A. A. M. Holtslag (1991) ArticleTitle‘Flux Parametrisation over Land Surfaces for Atmospheric Models’ J. Appl. Meteorol 30 327–341

    Google Scholar 

  • M. J. Best (1998) ArticleTitle‘A Model to Predict Surface Temperatures’ Boundary-Layer Meteorol 88 279–306

    Google Scholar 

  • M. J. Best W. P. Hopwood (2001) ArticleTitle‘Modelling the Local Surface Exchange over a Grass-Field Site under Stable Conditions’ Quart. J. Roy. Meteorol. Soc 127 2033–2052

    Google Scholar 

  • Black, P. B. and Tice, R. A.: 1988, Comparison of Soil Freezing Curve and Soil Water Curve Data for Windsor Sandy Loam, US Army Cold Regions Research and Engineering Laboratory Report, 88:16, 37 pp.

  • R. Bornstein Q. Lin (2000) ArticleTitle‘Urban Heat Islands and Summertime Convective Thunderstorms in Atlanta: Three Case Studies’ Atmos. Environ 34 507–516

    Google Scholar 

  • A. T. Chan E. S. P. So S. C. Samad (2001) ArticleTitle‘Strategic Guidelines for Street Canyon Geometry to Achieve Sustainable Street Air Quality’ Atmos. Environ 35 4089–4098

    Google Scholar 

  • G. J. Collatz J. T. Ball C. Grivet J. A. Berry (1991) ArticleTitle‘Physiological and Environmental Regulation of Stomatal Conductance, Photosynthesis and Transpiration: A model that Includes a Laminar Boundary Layer’ Agric. For. Meteorol 54 107–136

    Google Scholar 

  • G. J. Collatz M. Ribas-Carbo J. A. Berry (1992) ArticleTitle‘A Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants’ Aust. J. Plant Physiol 19 519–538

    Google Scholar 

  • B. J. Cosby G. M. Hornberger R. B. Clapp T. R. Ginn (1984) ArticleTitle‘A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils’ Water Resour. Res 20 682–690

    Google Scholar 

  • P. M. Cox R. A. Betts C. B. Bunton R. L. H. Essery P. R. Rowntree J. Smith (1999) ArticleTitle‘The Impact of New Land Surface Physics on the GCM Simulation of Climate and Climate Sensitivity’ Clim. Dyn 15 183–203

    Google Scholar 

  • P. M. Cox C. Huntingford R. J. Harding (1998) ArticleTitle‘A Canopy Conductance and Photosynthesis Model for Use in a GCM Land Surface Scheme’ J. Hydrol 212–213 79–94

    Google Scholar 

  • M. J. P. Cullen (1993) ArticleTitle‘The Unified Forecast/Climate Model’ Meteorol. Mag 122 81–94

    Google Scholar 

  • A. J. Dyer (1974) ArticleTitle‘A Review of Flux-Profile Relationships’ Boundary-Layer Meteorol 7 363–372

    Google Scholar 

  • R. L. H. Essery M. J. Best R. A. Betts P. M. Cox C. M. Taylor (2003) ArticleTitle‘Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme’ J. Hydrometeorol 4 530–543

    Google Scholar 

  • J. R. Garratt (1992) The Atmospheric Boundary Layer Cambridge University Press Cambridge 316

    Google Scholar 

  • C. S. B. Grimmond T. R. Oke (1995) ArticleTitle‘Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four North American Cities’ J. Appl. Meteorol 34 873–889

    Google Scholar 

  • C. S. B. Grimmond H. A. Cleugh T. R. Oke (1991) ArticleTitle‘An Objective Urban Heat Storage Model and its Comparison with Other Schemes’ Atmos. Environ 25 311–326

    Google Scholar 

  • H. Huang A. Yoshiaki A. Mitsuru T. Masamitsu (2000) ArticleTitle‘A Two-Dimensional Air Quality Model in an Urban Street Canyon: Evaluation and Sensitivity Analysis’ Atmos. Environ 5 689–698

    Google Scholar 

  • J.-J. Kim J.-J. Baik (2001) ArticleTitle‘Urban Street-Canyon Flows with Bottom Heating’ Atmos. Environ 35 3395–3404

    Google Scholar 

  • A. Martilli A. Clappier M. W. Rotach (2002) ArticleTitle‘An Urban Surface Exchange Parameterisation for Mesoscale Models’ Boundary-Layer Meteorol 104 261–304

    Google Scholar 

  • V. Masson (2000) ArticleTitle‘A Physically-Based Scheme For The Urban Energy Budget in Atmospheric Models’ Boundary-Layer Meteorol 94 357–397

    Google Scholar 

  • J. L. Monteith (1965) ArticleTitle‘Evaporation and the Environment’ Symp. Soc. Expl. Biol 19 205–234

    Google Scholar 

  • J. L. Morison R. M. Gifford (1983) ArticleTitle‘Stomatal Sensitivity to Carbon Dioxide and Humidity’ Plant Physiol 71 789–796

    Google Scholar 

  • S. Murakami R. Ooka A. Mochida S. Yoshida S. Kim (1999) ArticleTitle‘CFD Analysis of Wind Climate From Human to Urban Scale’ J. Wind Engin. Ind. Aerodyn 81 57–81

    Google Scholar 

  • Y. Ohashi H. Kida (2002) ArticleTitle‘Local Circulations Developed in the Vicinity of Both Coastal an Inland Urban Areas: A Numerical Study with a Mesoscale Atmospheric Model’ J. Appl. Meteorol 41 30–45

    Google Scholar 

  • T. R. Oke (1987) Boundary Layer Climates EditionNumber2 Cambridge University Press Cambridge 435

    Google Scholar 

  • Y. Tominaga A. Mochida (1999) ArticleTitle‘CFD Prediction of Flowfield and Snowdrift around a Building Complex in a Snowy Region’ J. Wind Engin. Ind. Aerodyn 81 273–282

    Google Scholar 

  • van den Hurk, B. J. J. M., Viterbo, P., Beljaars, A. C. M. and Betts, A. K.: 2000, Offline Validation of the ERA40 Surface Scheme, ECMWF Technical Memoranda 295, 42 pp.

  • P. J. Williams M. W. Smith (1989) The Frozen Earth: Fundamentals of Geocryology Cambridge University Press Cambridge 306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The British Crown’s right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, M.J. Representing urban areas within operational numerical weather prediction models. Boundary-Layer Meteorol 114, 91–109 (2005). https://doi.org/10.1007/s10546-004-4834-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-4834-5

Keywords

Navigation