Skip to main content
Log in

Length Scales of Scalar Diffusion in the Convective Boundary Layer: Laboratory Observations

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A laboratory study of scalar diffusion in the convective boundary layer has found results that are consistent with a 1999 large-eddy simulation (LES) study by Jonker, Duynkerke and Cuijpers. For bottom-up and top-down scalars (introduced as ‘infinite’ area sources of passive tracer at the surface and inversion, respectively) the dominant length scale was found to be much larger than the length scale for density fluctuations, the latter being equal to the boundary-layer depth h. The variance of the normalized passive scalar grew continuously with time and its magnitude was about 3–5 times larger for the top-down case than for the bottom-up case. The vertical profiles of the normalized passive scalar variance were found to be approximately constant through the convective boundary layer (CBL) with a value of about 3–8c*2 for bottom-up and 10–50c*2 for top-down diffusion. Finally, there was some evidence of a minimum in the variance and dominant length scale for scalar flux ratios (top-down to bottom-up flux) close to −0.5. All these convection tank results confirm the LES results and support the hypothesis that there is a distinct difference in behaviour between the dynamic and passive variables in the CBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S Caughey S. Palmer (1994) ArticleTitleSome Aspects of Turbulent Structure through the Depth of the Convective Boundary Layer Quart. J. Roy. Meteorol. Soc 105 811–827

    Google Scholar 

  • J. Deardorff (1966) ArticleTitleThe Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory J. Atmos. Sci 23 503–506

    Google Scholar 

  • P. Durand F. Thoumieux D. Lambert (1974) ArticleTitleTurbulent Length-Scales in the Marine Atmospheric Mixed Layer Quart. J. Roy. Meteorol. Soc 126 1889–1912

    Google Scholar 

  • E. Fedorovich (1995) ArticleTitleModeling the Atmospheric Convective boundary Layer within a Zero-Order Jump Approach: An Extended Theoretical Framework J. Appl. Meteorol 34 1916–1928

    Google Scholar 

  • Fedorovich E. (1997). Bulk Models of the Convective Boundary Layer’, in: E. Plate, E. Fedorovich, D. Viegas and J. Wyngaard (eds.): Buoyant Convection in Geophysical Flows, NATO ASI Series, Kluwer

  • A. Ferrier D. Funk P. Roberts (1993) ArticleTitleApplication of Optical Techniques to the Study of Plumes in Stratified Fluids Dyn. Atmos. Oceans 20 155–183

    Google Scholar 

  • J. FuhH. Li A. Corkan J. Lindsey (1998) ArticleTitlePhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry Photochem Photobiol 68 141–142

    Google Scholar 

  • Garratt J. R. (1992). The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.

  • M. Hibberd A. Luhar (1996) ArticleTitleA Laboratory Study and Improved PDF Model of Fumigation into a Growing Convective Boundary Layer Atmos. Environ 30 3633–3649 Occurrence Handle1:CAS:528:DyaK28XltlKmu7o%3D

    CAS  Google Scholar 

  • M Hibberd B. Sawford (1994) ArticleTitleA Saline Laboratory Model of the Planetary Convective Boundary Layer Boundary-Layer Meteorol 67 229–250

    Google Scholar 

  • H. Jonker P. Duynkerke J. Cuijpers (1999) ArticleTitleMesoscale Fluctuations in Scalars Generated by Boundary Layer Convection J. Atmos. Sci 56 801–808

    Google Scholar 

  • J. Kaimal J. Wyngaard D. Haugen O. Coté Y. Izumi S.J. Caughey C. Readings (1976) ArticleTitleTurbulence Structure in the Convective Boundary Layer J. Atmos. Sci 33 2152–2169

    Google Scholar 

  • D.H Lenschow J. Wyngaard (1980) ArticleTitleMean-field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer J. Atmos. Sci 37 1313–1326

    Google Scholar 

  • S Nicholls M. LeMone (1980) ArticleTitleThe Fair Weather Boundary Layer in GATE: The Relationship of Subcloud Fluxes and Structure to the Distribution and Enhancement of Cumulus Clouds J. Atmos. Sci 37 2051–2067

    Google Scholar 

  • J Nucciarone G. Young (1991) ArticleTitleAircraft Measurements of Turbulence Spectra in the Marine Stratocumulus-Topped Boundary Layer J. Atmos. Sci 48 2382–2392

    Google Scholar 

  • M. Piper J. Wyngaard W. Snyder L. R SuffixJr. (1995) ArticleTitleTop-Down, Bottom-Up Diffusion Experiments in a Water Convection Tank J. Atmos. Sci 52 3607–3619

    Google Scholar 

  • Z. Sorbjan (1991) ArticleTitleEvaluation of Local Similarity Functions in the Convective Boundary layer J. Appl. Meteorol 30 1565–1583

    Google Scholar 

  • H. Tennekes (1973) ArticleTitleA Model for the Dynamics of the Inversion above a Convective Layer J. Atmos. Sci 30 558–567

    Google Scholar 

  • A. Tuzet B. Guillemet H. Isaka (1983) ArticleTitleEchelles Interfaciales des Fluctuations de Temperature et d’Humidité dans la Couche de Mélange J. Reche. Atmos 17 185–197

    Google Scholar 

  • H. Dop Particlevan A. Herwijnen Particlevan D. As Particlevan M. Hibberd (2002) Velocity, Temperature and Scalar Length Scales in the CBL: Observations and Theory in: 15th Symposium on Boundary Layers and Turbulence Amer. Meteorol. Soc Boston, (MA) 269–272

    Google Scholar 

  • H. Dop Particlevan G. Verver (2001) ArticleTitleCountergradient Transport Revisited J. Atmos. Sci 58 2240–2247

    Google Scholar 

  • R. Walko W. Cotton R. Pielke (1992) ArticleTitleLarge-eddy Simulations of the Effects of Hilly␣Terrain on the Convective boundary layer Boundary-Layer Meteorol 58 133–150

    Google Scholar 

  • G Willis J. Deardorff (1974) ArticleTitleA Laboratory Model of the Unstable Planetary Boundary layer J. Atmos. Sci 31 1297–1307

    Google Scholar 

  • J Wyngaard R.A. Brost (1984) ArticleTitleTop-down and Bottom-up Diffusion of a Scalar in the Convective Boundary Layer J. Atmos. Sci 41 102–111

    Google Scholar 

  • G. Young (1991) ArticleTitleMixed Layer spectra from Aircraft Measurements J. Atmos. Sci 9 1251–1256

    Google Scholar 

  • G.S. Young. (1988) ArticleTitleTurbulence Structure of the Convective Boundary Layer. Part I: Variability and Normalized Turbulence Statistics. J. Atmos. Sci 45 727–735

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han van Dop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dop, H.v., As, D.v., Herwijnen, A.v. et al. Length Scales of Scalar Diffusion in the Convective Boundary Layer: Laboratory Observations. Boundary-Layer Meteorol 116, 1–35 (2005). https://doi.org/10.1007/s10546-004-2165-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-2165-1

Keywords

Navigation