Skip to main content
Log in

Vertical Heat Transfer in the Lower Atmosphere over the Arctic Ocean During Clear-sky Periods

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A diagnostic study of heat transfer within the lower atmosphere and between the atmosphere and the surface of the Arctic Ocean snow/ice pack during clear-sky conditions is conducted using data from the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment. Surface heat budgets computed for four cloudy and four clear periods show that, while the net turbulent heat fluxes at the surface are small during the cloudy periods, during the clear-sky periods they are a considerable source of surface heating, balancing significant portions of the conductive heat fluxes from within the snow/ice pack. Analysis of the dynamics and thermodynamics of the lower atmosphere during the clear-sky periods reveals that a considerable portion of the heat lost to the surface by turbulent heat fluxes is balanced by locally strong heating near the atmospheric boundary-layer (ABL) top due to the interaction of subsiding motions with the strong overlying temperature inversions surmounting the ABL. This heat is then entrained into the ABL and transported to the surface by turbulent mixing, maintained by a combination of vertical wind shear and wave-turbulence interactions. The frequency of stable, clear-sky periods, particularly during the winter, combined with these results, suggests that the downward transfer of heat through the lower atmosphere and into the surface represents an important component of the heat budgets of the lower atmosphere and snow/ice pack over the annual cycle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Andrén (1995) ArticleTitle‘The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study’ Quart. J. Roy. Meteorol. Soc. 121 961–985 Occurrence Handle10.1256/smsqj.52501

    Article  Google Scholar 

  • T.K. Cheung (1991) ArticleTitle‘Sodar Observations of the Stable Lower Atmospheric Boundary Layer at Barrow, Alaska’ Boundary-Layer Meteorol. 57 251–274 Occurrence Handle10.1007/BF00120887

    Article  Google Scholar 

  • G. Chimonas (1980) ‘Waves, Stability and Turbulence’ J.C Wyngaard (Eds) Workshop on the Planetary Boundary Layer Amer. Meteor. Soc Boston, Massachusetts 392

    Google Scholar 

  • J.A. Curry E.E. Ebert (1992) ArticleTitle‘Annual Cycle of Radiative Fluxes over the Arctic Ocean’ J. Climate 5 1267–1280 Occurrence Handle10.1175/1520-0442(1992)005<1267:ACORFO>2.0.CO;2

    Article  Google Scholar 

  • J.A. Curry W.B. Rossow D. Randall J.L. Schramm (1996) ArticleTitle‘Overview of Arctic Cloud and Radiation Characteristics’ J. Climate 9 1731–1764 Occurrence Handle10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2

    Article  Google Scholar 

  • S.H. Derbyshire (1990) ArticleTitle‘Nieuwstadt’s Stable Boundary Layer Revisited’ Quart. J. Roy. Meteorol. Soc. 116 127–158 Occurrence Handle10.1256/smsqj.49105

    Article  Google Scholar 

  • C.W. Fairall E.F. Bradley D.P. Rogers J.B. Edson G.S. Young (1996) ArticleTitle‘Bulk Parameterization of Air-Sea Fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment’ J. Geophys. Res. 101 3747–3764 Occurrence Handle10.1029/95JC03205

    Article  Google Scholar 

  • J. Forrer M.W. Rotach (1997) ArticleTitle‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet ’ Boundary-Layer Meteorol. 85 111–136 Occurrence Handle10.1023/A:1000466827210

    Article  Google Scholar 

  • J.J. Finnigan (1988) ArticleTitle‘Kinetic Energy Transfer Between Internal Gravity Waves and Turbulence’ J. Atmos. Sci. 45 486–505 Occurrence Handle10.1175/1520-0469(1988)045<0486:KETBIG>2.0.CO;2

    Article  Google Scholar 

  • J.J. Finnigan F. Einaudi (1981) ArticleTitle‘The Interaction Between an Internal Gravity Wave and the Planetary Boundary Layer. Part II: The Effect of the Wave on the Turbulence Structure’ Quart. J. Roy. Meteorol. Soc. 107 807–832 Occurrence Handle10.1256/smsqj.45404

    Article  Google Scholar 

  • P. Fua G. Chimonas F. Einaudi O. Zeman (1982) ArticleTitle‘An Analysis of a Wave Turbulence Interaction’ J. Atmos. Sci. 39 2450–2463 Occurrence Handle10.1175/1520-0469(1982)039<2450:AAOWTI>2.0.CO;2

    Article  Google Scholar 

  • Hahn C.J., Warren S.G., London J., Chervin R.M., Jenne R.L. 1984, ‘Atlas of Simultaneous Occurrence of Different Cloud Types Over Land’, NCAR Tech. Note, TN-241+STR, 21 pp.

  • D. Handorf T. Foken C. Kottmeier (2000) ArticleTitle‘The Stable Atmospheric Boundary Layer over an Antarctic Ice Sheet’ Boundary-Layer Meteorol. 91 165–189 Occurrence Handle10.1023/A:1001889423449

    Article  Google Scholar 

  • W.H. Hooke F.F. Hall E.E. Gossard (1973) ArticleTitle‘Observed Generation of an Atmospheric Gravity Wave by Shear Instability in the Mean Flow of the Planetary Boundary-Layer’ Boundary-Layer Meteorol. 5 29–41 Occurrence Handle10.1007/BF02188309

    Article  Google Scholar 

  • Huschke R.E. (1969). ‘Arctic Cloud Statistics From Air-Calibrated Surface Weather Observations’. The Rand Corporation, RM-6173-PR, 79 pp.

  • J.M. Intrieri M.D. Shupe T. Uttal B.J. McCarty (2002a) ArticleTitle‘Annual Cycle of Arctic Cloud Geometry and Phase from Radar and Lidar at SHEBA’ J. Geophys. Res. 107 IssueIDC10 8030 Occurrence Handle10.1029/2000JC000423

    Article  Google Scholar 

  • J.M. Intrieri et al. (2002b) ArticleTitle‘An Annual Cycle of Arctic Surface Cloud Forcing at SHEBA’ J. Geophys. Res. 107 IssueIDC10 8039 Occurrence Handle10.1029/2000JC000439

    Article  Google Scholar 

  • InstitutionalAuthorNameIPCC (2001) Climate Change 2001, The Scientific Basis Cambridge University Press New York 881

    Google Scholar 

  • J. Kondo O. Kanechika N. Yosuda (1978) ArticleTitle‘Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer’ J. Atmos. Sci. 35 1012–1021 Occurrence Handle10.1175/1520-0469(1978)035<1012:HAMTUS>2.0.CO;2

    Article  Google Scholar 

  • J. Kim L. Mahrt (1992) ArticleTitle‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary layer’ Tellus 44A 381–394

    Google Scholar 

  • B. Kosović J.A. Curry (2000) ArticleTitle‘A Large Eddy Simulation of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer’ J. Atmos. Sci. 57 1052–1068 Occurrence Handle10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2

    Article  Google Scholar 

  • Larsen S.E., Courtney M., Mahrt L. (1990). ‘Low Frequency Behavior of Horizontal Power Spectra in Stable Surface Layers’, in Proceedings of the 9th AMS Symposium on Turbulence and Diffusion, pp. 401–404

  • L. Mahrt (1999) ArticleTitle‘Stratified Atmospheric Boundary Layers’ Boundary-Layer Meteorol. 90 375–396 Occurrence Handle10.1023/A:1001765727956

    Article  Google Scholar 

  • L. Mahrt D. Vickers (2001) ArticleTitle‘Contrasting Vertical Structures of Nocturnal Boundary Layers’ Boundary-Layer Meteorol. 105 351–363 Occurrence Handle10.1023/A:1019964720989

    Article  Google Scholar 

  • P.J. Mason D.J. Derbyshire (1990) ArticleTitle‘Large-Eddy Simulation of the Stably Stratified Atmospheric boundary Layer’ Boundary-Layer Meteorol. 53 117–162 Occurrence Handle10.1007/BF00122467

    Article  Google Scholar 

  • G.A. Maykut (1982) ArticleTitle‘Large-Scale Heat Exchange and Ice Production in the Central Arctic’ J. Geophys. Res. 87 7971–7984

    Google Scholar 

  • E.J. Mlawer S.J. Taubman P.D. Brown M.J. Iacono S.A. Clough (1997) ArticleTitle‘Radiative Transfer for Inhomogeneous Atmospheres: RRTM a Validated Correlated-k Model for the Longwave’ J. Geophys. Res. 102 16663–16682 Occurrence Handle10.1029/97JD00237

    Article  Google Scholar 

  • C.J. Nappo (1990) ArticleTitle‘Sporadic Breakdowns of Stability in the PBL Over Simple and Complex Terrain’ Boundary-Layer Meteorol. 54 69–87 Occurrence Handle10.1007/BF00119413

    Article  Google Scholar 

  • Nappo, C. J.: 2002. An Introduction to Atmospheric Gravity Waves. Academic Press, 276 pp.

  • Persson, P. O. G., Fairall, C. W., Andreas, E. L., Guest, P. S., and Perovich, D. K.: 2002, ‘Measurements near the Atmospheric Surface Flux Group Tower at SHEBA: Site Description, Data Processing, and Accuracy Estimates’, NOAA Tech. Memo. OAR ETL (available at the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22061).

  • R. Przybylak (2003) The Climate of the Arctic Kluwer Academic Publishers Dordrecht 270

    Google Scholar 

  • E.M. Saiki C. Moeng P.S. Sullivan (2000) ArticleTitle‘Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer’ Boundary-Layer Meteorol. 95 1–30 Occurrence Handle10.1023/A:1002428223156

    Article  Google Scholar 

  • Sempreviva A., Larsen E., Mortensen N.G. (1992). ‘Experimental Study of Flow Modification Inland from a Coast for Non-Neutral Conditions’, RISØ M–2924

  • A.J. Schweiger R.J. Key (1994) ArticleTitle‘Arctic Ocean Radiative Fluxes and Cloud Forcing Estimates from the ISCCP C2 Cloud Dataset, 1983–1990’ J. Appl. Meteorol. 33 948–963 Occurrence Handle10.1175/1520-0450(1994)033<0948:AORFAC>2.0.CO;2

    Article  Google Scholar 

  • A.S. Smedman (1988) ArticleTitle‘Observations of a Multi-level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 44 231–253 Occurrence Handle10.1007/BF00116064

    Article  Google Scholar 

  • R.B. Stull (1988) An Introduction to Boundary Layer Meteorology Kluwer Academic Publishers Dordrecht 666

    Google Scholar 

  • M. Sturm J. Holmgren D.K. Perovich (2001) ArticleTitle‘Spatial Variability in the Winter Heat Flux at SHEBA: Estimates from Snow-Ice Interface temperatures’ Annals of Glaciol 33 213–220

    Google Scholar 

  • Sturm M., Perovich D.K., Holmgren J. (2004). ‘Thermal Conductivity and Heat Transfer Through the Snow on the Ice of the Beaufort Sea’. J. Geophys. Res.107:10.1029/2000JC000409

  • T. Uttal et al. (2002) ArticleTitle‘The Surface Heat Budget of the Arctic Ocean’ Bull. Am. Meteorol. Soc. 83 255–275 Occurrence Handle10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2

    Article  Google Scholar 

  • J.E. Walsh W.L. Chapman (1998) ArticleTitle‘Arctic Cloud-Radiation-Temperature Associations in Observational Data and Atmospheric Reanalysis’ J. Climate 11 3030–3044 Occurrence Handle10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2

    Article  Google Scholar 

  • Warren, S. G., Hahn, C. J., London, J., Chervin R. M., and Jenne, R. L.: 1988, ‘Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Arctic Ocean’, NCAR Tech. Note, TN-317+STR, 212 pp.

  • T. Zhang K. Stamnes S.A. Bowling (1996) ArticleTitle‘Impact of Clouds on Surface Radiation Fluxes and Snowmelt in the Arctic and Subarctic’ J. Climate 9 2110–2123 Occurrence Handle10.1175/1520-0442(1996)009<2110:IOCOSR>2.0.CO;2

    Article  Google Scholar 

  • S.S. Zilitinkevich D.V. Mironov (1996) ArticleTitle‘A Multi-Limit Formula for the Equilibrium Depth of a Stably Stratified Boundary Layer’ Boundary-Layer Meteorol. 81 325–351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Mirocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirocha, J.D., Kosović, B. & Curry, J.A. Vertical Heat Transfer in the Lower Atmosphere over the Arctic Ocean During Clear-sky Periods. Boundary-Layer Meteorol 117, 37–71 (2005). https://doi.org/10.1007/s10546-004-1130-3

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-004-1130-3

Keywords

Navigation