Advertisement

Journal of Inherited Metabolic Disease

, Volume 41, Issue 5, pp 849–863 | Cite as

Pregnancy management and outcome in patients with four different tetrahydrobiopterin disorders

  • O. Kuseyri
  • A. Weissbach
  • N. Bruggemann
  • C. Klein
  • M. Giżewska
  • D. Karall
  • S. Scholl-Bürgi
  • H. Romanowska
  • E. Krzywińska-Zdeb
  • A. A. Monavari
  • I. Knerr
  • Z. Yapıcı
  • V. Leuzzi
  • T. Opladen
Original Article
  • 117 Downloads

Abstract

Introduction

Inborn errors of tetrahydrobiopterin (BH4) biosynthesis or recycling are a group of very rare neurometabolic diseases. Following growing awareness and improved availability of drug treatment the number of patients with BH4 disorders reaching adulthood is constantly increasing. Pregnancy care of patients with these disorders is therefore a new challenge for clinicians.

Methods

This retrospective study summarises for the first time clinical and biochemical monitoring data of 16 pregnancies in seven women with different disorders of BH4 metabolism and evaluates treatment regimens before and during pregnancy in relation to the obstetrical outcome and paediatric follow-up.

Results

Worsening of pre-existing neurological symptoms or occurrence of new symptoms during pregnancy was not observed in most of the cases. Treatment regimens remained mostly unchanged. Pregnancies were not complicated by disease-specific features. Organ abnormalities, miscarriage, prematurity, IUGR and chromosomal changes were occasionally reported, without showing any association with the standard drug treatment for BH4 deficiencies.

Conclusion

Although our data on 16 pregnancies in seven patients did not present any association of standard drug treatment with an increased rate of pregnancy complications, abnormal obstetrical or paediatric outcome, an intensive clinical and biochemical supervision by a multidisciplinary team before, during and after the pregnancy in any BH4 deficiency is essential since available data on pregnancies in patients with BH4 deficiencies is limited.

Abbreviations

5-HIAA

5-Hydroxyindolacetic acid

5-HTP

5-Hydroxytryptophan

MHPG

3-Methoxy-4-hydroxyphenylglycol

5-MTHF

5-Methyltetrahydrofolic acid

3-OMD

3-Orthomethyldopa

PTPS

6-Pyruvoyl-tetrahydrobiopterin synthase

PTPS-D

6-Pyruvoyl-tetrahydrobiopterin synthase deficiency

ASD

Atrial septal defect

adGTPCH

Autosomal dominant guanosine triphosphate cyclohydrolase 1

adGTPCH-D

Autosomal dominant guanosine triphosphate cyclohydrolase 1 deficiency

arGTPCH

Autosomal recessive guanosine triphosphate cyclohydrolase 1

arGTPCH-D

Autosomal recessive guanosine triphosphate cyclohydrolase 1 deficiency

CSF

Cerebral spinal fluid

CNS

Central nervous system

DHPR

Dihydropteridine reductase

DHPR-D

Dihydropteridine reductase deficiency

DBS

Dried blood spot

GA

Gestational age

GW

Gestational week

HVA

Homovanillic acid

HPA

Hyperphenylalaninemia

iNTD

International Working Group on Neurotransmitter Related Disorders

IUGR

Intrauterine growth restriction

L-dopa

Levodopa

LSCS

Lower segment caesarean section

MPKU

Maternal phenylketonuria

MPKUS

Maternal PKU syndrome

NBS

Newborn screening

NOS

Nitric oxide synthase

PD

Parkinson’s disease

Phe

Phenylalanine

PAH

Phenylalanine-4-hydroxylase

PKU

Phenylketonuria

PCD

Pterin-4 alpha-carbinolamine dehydratase

SR

Sepiapterin reductase

SR-D

Sepiapterin reductase deficiency

BH4

Tetrahydrobiopterin

TH

Tyrosine hydroxylase

TPH

Tryptophan hydroxylase

Notes

Acknowledgements

We thank Dr. D. Hübschmann and Dr N. Ishaque for fruitful discussion. This study was partially supported by Dietmar Hopp Stiftung, St. Leon-Rot, Germany.

Funding

No funding was provided for this work.

Compliance with ethical standards

Conflict of interest

O. Kuseyri, A. Weissbach, N. Bruggemann, C. Klein, M. Giżewska, D. Karall, S. Scholl-Bürgi, H. Romanowska, E. Krzywińska-Zdeb, A.A. Monavari, I. Knerr, Z. Yapıcı, V. Leuzzi, and T. Opladen declare that they have no conflict of interest.

Studies with animal

This article does not contain any studies with animal subjects performed by the any of the authors.

Supplementary material

10545_2018_169_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 31 kb)

References

  1. Allain H, Bentue-Ferrer D, Milon D, Moran P, Jacquemard F, Defawe G (1989) Pregnancy and parkinsonism. A case report without problem. Clin Neuropharmacol 12(3):217–219CrossRefPubMedGoogle Scholar
  2. American Academy of Pediatrics Committee on Genetics (2008) Policy statement: maternal phenylketonuria. Pediatrics 122:445–449CrossRefGoogle Scholar
  3. Arai H, Shinotoh H, Hattori T (1997) L-dopa/benserazide during pregnancy in a patient with juvenile parkinsonism. Rinsho Shinkeigaku 37(3):264–265PubMedGoogle Scholar
  4. Ball MC, Sagar HJ (1995) Levodopa in pregnancy. Mov Disord 10(1):115CrossRefPubMedGoogle Scholar
  5. Bartholome K (1974) Letter: a new molecular defect in phenylketonuria. Lancet 2(7896):1580CrossRefPubMedGoogle Scholar
  6. Basson CT, Cowley GS, Solomon SD et al (1994) The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 330(13):885–891CrossRefPubMedGoogle Scholar
  7. Beck S, Wojdyla D, Say L et al (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88(1):31–38CrossRefPubMedGoogle Scholar
  8. Benbir G, Ertan S, Ozekmekci S (2014) Successful pregnancy and delivery in a patient with Parkinson's disease under pramipexole treatment. Presse Med 43(1):83–85CrossRefPubMedGoogle Scholar
  9. Benetello P, Furlanut M, Zara G, Baraldo M, Hassan E (1993) Plasma levels of levodopa and its main metabolites in parkinsonian patients after conventional and controlled-release levodopa-carbidopa associations. Eur Neurol 33(1):69–73CrossRefPubMedGoogle Scholar
  10. Benito-Leon J, Bermejo F, Porta-Etessam J (1999) Pregnancy in Parkinson's disease: a review of the literature and a case report. Mov Disord 14(1):194CrossRefPubMedGoogle Scholar
  11. Blau N, Thöny B, Cotton R, Hyland K (2001) Disorders of tetrahydrobiopterin and related biogenic amines. McGraw-Hill, New YorkGoogle Scholar
  12. Blau N, van Spronsen FJ (2014) Disorders of phenylalanine and tetrahydrobiopterin metabolism. In: Blau N, Duran M, Dionisi-vici C (eds) Physician's guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases. Springer, Heidelberg, pp 3–21Google Scholar
  13. Bruggemann N, Spiegler J, Hellenbroich Y et al (2012) Beneficial prenatal levodopa therapy in autosomal recessive guanosine triphosphate cyclohydrolase 1 deficiency. Arch Neurol 69(8):1071–1075CrossRefPubMedGoogle Scholar
  14. Brunelli S, Faiella A, Capra V et al (1996) Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 12(1):94–96CrossRefPubMedGoogle Scholar
  15. Capra V, De Marco P, Moroni A et al (1996) Schizencephaly: surgical features and new molecular genetic results. Eur J Pediatr Surg 6(Suppl 1):27–29CrossRefPubMedGoogle Scholar
  16. Choi TY, Lee HM, Park WK, Jeong SY, Moon HS (2014) Spontaneous abortion and recurrent miscarriage: a comparison of cytogenetic diagnosis in 250 cases. Obstet Gynecol Sci 57(6):518–525CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cook DG, Klawans HL (1985) Levodopa during pregnancy. Clin Neuropharmacol 8(1):93–95CrossRefPubMedGoogle Scholar
  18. Dhondt J-L (2006) Follow-up and outcome of tetrahydrobiopterin deficiencies. In Blau, N PKU and BH4: advances in phenylketonuria and tetrahydrobiopterin. Heilbronn, SPS Verlagsgesellschaft, pp 652–677Google Scholar
  19. Dostal M, Weber-Schoendorfer C, Sobesky J, Schaefer C (2013) Pregnancy outcome following use of levodopa, pramipexole, ropinirole, and rotigotine for restless legs syndrome during pregnancy: a case series. Eur J Neurol 20(9):1241–1246CrossRefPubMedGoogle Scholar
  20. Douglas G, Hale AB, Crabtree MJ et al (2015) A requirement for Gch1 and tetrahydrobiopterin in embryonic development. Dev Biol 399(1):129–138CrossRefPubMedPubMedCentralGoogle Scholar
  21. Feillet F, Muntau AC, Debray FG et al (2014) Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J Inherit Metab Dis 37(5):753–762CrossRefPubMedGoogle Scholar
  22. Felix JF, de Jong EM, Torfs CP, de Klein A, Rottier RJ, Tibboel D (2009) Genetic and environmental factors in the etiology of esophageal atresia and/or tracheoesophageal fistula: an overview of the current concepts. Birth Defects Research Part A: Clin Molec Teratol 85(9):747–754CrossRefGoogle Scholar
  23. Fenton TR, Kim JH (2013) A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 13:59CrossRefPubMedPubMedCentralGoogle Scholar
  24. Friedman J, Roze E, Abdenur JE et al (2012) Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 71(4):520–530CrossRefPubMedGoogle Scholar
  25. Gershanik OS, Leist A (1987) Juvenile onset Parkinson's disease. Adv Neurol 45:213–216PubMedGoogle Scholar
  26. Gizewska M, Hnatyszyn G, Sagan L et al (2009) Maternal tetrahydrobiopterin deficiency: the course of two pregnancies and follow-up of two children in a mother with 6-pyruvoyl-tetrahydropterin synthase deficiency. J Inherit Metab Dis 32(Suppl 1):S83–S89CrossRefPubMedGoogle Scholar
  27. Golbe LI (1987) Parkinson's disease and pregnancy. Neurology 37(7):1245–1249CrossRefPubMedGoogle Scholar
  28. Grange DK, Hillman RE, Burton BK et al (2014) Sapropterin dihydrochloride use in pregnant women with phenylketonuria: an interim report of the PKU MOMS sub-registry. Mol Genet Metab 112(1):9–16CrossRefPubMedGoogle Scholar
  29. Hagell P, Odin P, Vinge E (1998) Pregnancy in Parkinson's disease: a review of the literature and a case report. Mov Disord 13(1):34–38CrossRefPubMedGoogle Scholar
  30. Hanley WB, Clarke JT, Schoonheyt W (1987) Maternal phenylketonuria (PKU)--a review. Clin Biochem 20(3):149–156CrossRefPubMedGoogle Scholar
  31. Howe DT, Rankin J, Draper ES (2012) Schizencephaly prevalence, prenatal diagnosis and clues to etiology: a register-based study. Ultrasound Obstet Gynecol 39(1):75–82CrossRefPubMedGoogle Scholar
  32. Irons M, Levy HL, O'Flynn ME et al (1987) Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr 110(1):61–67CrossRefPubMedGoogle Scholar
  33. Jacquemard F, Palaric JC, Allain H, Giraud JR (1990) Parkinson disease and pregnancy. Apropos of a case. J Gynecol Obstet Biol Reprod (Paris) 19(4):461–463Google Scholar
  34. Jaggi L, Zurfluh MR, Schuler A et al (2008) Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 93(3):295–305CrossRefPubMedGoogle Scholar
  35. Koch R, Moseley K, Guttler F (2005) Tetrahydrobiopterin and maternal PKU. Mol Genet Metab 86(Suppl 1):S139–S141CrossRefPubMedGoogle Scholar
  36. Kranick SM, Mowry EM, Colcher A, Horn S, Golbe LI (2010) Movement disorders and pregnancy: a review of the literature. Mov Disord 25(6):665–671CrossRefPubMedGoogle Scholar
  37. Levy HL (2003) Historical background for the maternal PKU syndrome. Pediatrics 112(6 Pt 2):1516–1518PubMedGoogle Scholar
  38. Mabry CC, Denniston JC, Nelson TL, Son CD (1963) Maternal phenylketonuria. A cause of mental retardation in children without the metabolic defect. N Engl J Med 269:1404–1408CrossRefPubMedGoogle Scholar
  39. McIntyre S, Badawi N, Blair E, Nelson KB (2015) Does aetiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy influence the outcome of treatment? Dev Med Child Neurol 57(Suppl 3):2–7CrossRefPubMedGoogle Scholar
  40. Merchant CA, Cohen G, Mytilineou C et al (1995) Human transplacental transfer of carbidopa/levodopa. J Neural Transm Park Dis Dement Sect 9(2–3):239–242CrossRefPubMedGoogle Scholar
  41. Mucchiut M, Belgrado E, Cutuli D, Antonini A, Bergonzi P (2004) Pramipexole-treated Parkinson's disease during pregnancy. Mov Disord 19(9):1114–1115CrossRefPubMedGoogle Scholar
  42. Murphy E (2015) Pregnancy in women with inherited metabolic disease. Obstet Med 8(2):61–67CrossRefPubMedPubMedCentralGoogle Scholar
  43. Narisawa K, Arai N, Ishizawa S et al (1980) Dihydropteridine reductase deficiency: diagnosis by leukocyte enzyme assay. Clin Chim Acta 105(3):335–342CrossRefPubMedGoogle Scholar
  44. Nassar N, Leoncini E, Amar E et al (2012) Prevalence of esophageal atresia among 18 international birth defects surveillance programs. Birth Defects Res Part A: Clin Molec Teratol 94(11):893–899CrossRefGoogle Scholar
  45. Neilson JP, Gyte GM, Hickey M, Vazquez JC, Dou L (2013) Medical treatments for incomplete miscarriage. Cochrane Database Syst Rev 3:CD007223Google Scholar
  46. Nomoto M, Kaseda S, Iwata S, Osame M, Fukuda T (1997) Levodopa in pregnancy. Mov Disord 12(2):261PubMedGoogle Scholar
  47. Opladen T, Cortès-Saladelafont E, Mastrangelo M et al (2016) The InternationalWorking group on neurotransmitter related disorders (iNTD): a worldwide research project focused on primary and secondary neurotransmitter disorders. Molec Genet Metab Rep 9:61–66CrossRefGoogle Scholar
  48. Opladen T, Hoffmann G, Horster F et al (2011) Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 26(1):157–161CrossRefPubMedGoogle Scholar
  49. Opladen T, Hoffmann GF, Blau N (2012) An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis 35(6):963–973CrossRefPubMedGoogle Scholar
  50. Pini Prato A, Carlucci M, Bagolan P et al (2015) A cross-sectional nationwide survey on esophageal atresia and tracheoesophageal fistula. J Pediatr Surg 50(9):1441–1456CrossRefPubMedGoogle Scholar
  51. Ponzone A, Ferraris S, Baglieri S,Spada M (2006) Treatment of tetrahydrobiopterin deficiencies. In Blau, N PKU and BH4: advances in phenylketonuria and tetrahydrobiopterin. Heilbronn, SPS Verlagsgesellschaft, pp 612–637Google Scholar
  52. Rey F, Blandin-Savoja F, Rey J (1976) Atypical phenylketonuria with normal dihydropteridine reductase activity. N Engl J Med 295(20):1138–1139CrossRefPubMedGoogle Scholar
  53. Routiot T, Lurel S, Denis E, Barbarino-Monnier P (2000) Parkinson's disease and pregnancy: case report and literature review. J Gynecol Obstet Biol Reprod (Paris) 29(5):454–457Google Scholar
  54. Scott M, Chowdhury M (2005) Pregnancy in Parkinson's disease: unique case report and review of the literature. Mov Disord 20(8):1078–1079CrossRefPubMedGoogle Scholar
  55. Segawa M, Hosaka A, Miyagawa F, Nomura Y, Imai H (1976) Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol 14:215–233PubMedGoogle Scholar
  56. Segawa M, Nomura Y, Nishiyama N (2003) Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol 54(Suppl 6):S32–S45CrossRefPubMedGoogle Scholar
  57. Serikawa T, Shimohata T, Akashi M et al (2011) Successful twin pregnancy in a patient with parkin-associated autosomal recessive juvenile parkinsonism. BMC Neurol 11:72CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sharma D, Shastri S, Sharma P (2016) Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr 10:67–83PubMedPubMedCentralGoogle Scholar
  59. Shintaku H, Ohwada M (2013) Long-term follow-up of tetrahydrobiopterin therapy in patients with tetrahydrobiopterin deficiency in Japan. Brain Develop 35(5):406–410Google Scholar
  60. Shulman LM, Minagar A, Weiner WJ (2000) The effect of pregnancy in Parkinson's disease. Mov Disord 15(1):132–135CrossRefPubMedGoogle Scholar
  61. Steinberger D, Blau N, Goriuonov D et al (2004) Heterozygous mutation in 5′-untranslated region of sepiapterin reductase gene (SPR) in a patient with dopa-responsive dystonia. Neurogenetics 5(3):187–190CrossRefPubMedGoogle Scholar
  62. Thony B, Blau N (2006) Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat 27(9):870–878CrossRefPubMedGoogle Scholar
  63. Trender-Gerhard I, Sweeney MG, Schwingenschuh P et al (2009) Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. J Neurol Neurosurg Psychiatry 80(8):839–845CrossRefPubMedGoogle Scholar
  64. van der Linde D, Konings EE, Slager MA et al (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21):2241–2247CrossRefPubMedGoogle Scholar
  65. van Spronsen FJ, van Wegberg AM, Ahring K et al (2017) Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 5(9):743–756CrossRefPubMedGoogle Scholar
  66. Ventzke A, Hoffmann J, Crushell E, Monavari A, Mayne PD, Knerr I (2015) 'Malignant Phenylketonuria' (PKU) due to Dihydropteridine reductase (DHPR) deficiency. Ir Med J 108(10):312–314PubMedGoogle Scholar
  67. Voigt M, Zels K, Guthmann F, Hesse V, Gorlich Y, Straube S (2011) Somatic classification of neonates based on birth weight, length, and head circumference: quantification of the effects of maternal BMI and smoking. J Perinat Med 39(3):291–297CrossRefPubMedGoogle Scholar
  68. Volpe JJ (2012) Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol 72(2):156–166CrossRefPubMedGoogle Scholar
  69. von Graevenitz KS, Shulman LM, Revell SP (1996) Levodopa in pregnancy. Mov Disord 11(1):115–116CrossRefGoogle Scholar
  70. Watanabe T, Matsubara S (2012) Good obstetric outcome in a patient with Segawa disease. Arq Neuropsiquiatr 70(7):559–560CrossRefPubMedGoogle Scholar
  71. Watanabe T, Matsubara S, Baba Y, Tanaka H, Suzuki T, Suzuki M (2009) Successful management of pregnancy in a patient with Segawa disease: case report and literature review. J Obstet Gynaecol Res 35(3):562–564CrossRefPubMedGoogle Scholar
  72. Werner ER, Blau N, Thony B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438(3):397–414CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • O. Kuseyri
    • 1
  • A. Weissbach
    • 2
    • 3
  • N. Bruggemann
    • 2
    • 3
  • C. Klein
    • 2
    • 3
  • M. Giżewska
    • 4
  • D. Karall
    • 5
  • S. Scholl-Bürgi
    • 5
  • H. Romanowska
    • 4
  • E. Krzywińska-Zdeb
    • 4
  • A. A. Monavari
    • 6
  • I. Knerr
    • 6
  • Z. Yapıcı
    • 7
  • V. Leuzzi
    • 8
  • T. Opladen
    • 1
  1. 1.Division of Child Neurology and Metabolic DiseasesUniversity Children‘s Hospital HeidelbergHeidelbergGermany
  2. 2.Institute of NeurogeneticsUniversity of LübeckLübeckGermany
  3. 3.Department of NeurologyUniversity of LübeckLübeckGermany
  4. 4.Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and CardiologyPomeranian Medical University in SzczecinSzczecinPoland
  5. 5.Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
  6. 6.National Centre for Inherited Metabolic DisordersTemple Street Children’s University HospitalDublinIreland
  7. 7.Department of Child Neurology, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
  8. 8.Department of Paediatrics and Child Neurology and PsychiatrySapienza Università di RomaRomaItaly

Personalised recommendations