Skip to main content

Advertisement

Log in

Keeping an eye on congenital disorders of O-glycosylation: a systematic literature review

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

α-DG:

Alpha-dystroglycan

AC:

Anterior chamber

CDG:

Congenital disorder(s) of glycosylation

ERG:

Electroretinogram

FCMD:

Fukuyama congenital muscular dystrophy

ILM:

Inner limiting membrane

LRS:

Larsen of Reunion Island syndrome

MEB:

Muscle-eye-brain disease

PA:

Peters anomaly

PHV:

Persistent hyaloid vasculature

PHPV:

Persistent hyperplastic primary vitreous

PPV:

Persistent primary vitreous

PTM:

Posttranslational modification

RP:

Retinitis pigmentosa

VEP:

Visual evoked potential

WWS:

Walker-Warburg syndrome

References

  • Ackroyd MR, Skordis L, Kaluarachchi M et al (2009) Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies. Brain 132:439–451

    Article  CAS  PubMed  Google Scholar 

  • Ackroyd MR, Whitmore C, Prior S et al (2011) Fukutin-related protein alters the deposition of Laminin in the eye and brain. J Neurosci 31:12927–12935

    Article  CAS  PubMed  Google Scholar 

  • Alazami AM, Al-Qattan SM, Faqeih E et al (2016) Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum Genet 135:525–540

    Article  CAS  PubMed  Google Scholar 

  • Aliferis K, Marsal C, Pelletier V et al (2010) A novel nonsense B3GALTL mutation confirms Peters plus syndrome in a patient with multiple malformations and Peters anomaly. Ophthalmic Genet 31:205–208

    Article  CAS  PubMed  Google Scholar 

  • Argüeso P, Tisdale A, Mandel U et al (2003) The cell-layer- and cell-type-specific distribution of Ga1NAc-transferases in the ocular surface epithelia is altered during keratinization. Investig Ophthalmol Vis Sci 44:86–92

    Article  Google Scholar 

  • Arunrut T, Sabbadini M, Jain M et al (2016) Corneal clouding, cataract, and colobomas with a novel missense mutation in B4GALT7- a review of eye anomalies in the linkeropathy syndromes. Am J Med Genet Part A 9999A:1–8

    Google Scholar 

  • Avşar-Ban E, Ishikawa H, Manya H et al (2010) Protein O-mannosylation is necessary for normal embryonic development in zebrafish. Glycobiology 20:1089–1102

    Article  PubMed  CAS  Google Scholar 

  • Baasanjav S, Al-Gazali L, Hashiguchi T et al (2011) Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet 89:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barresi R, Michele DE, Kanagawa M et al (2004) LARGE can functionally bypass α-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10:696–703

    Article  CAS  PubMed  Google Scholar 

  • Beltrán-Valero de Bernabé D, van Bokhoven H, van Beusekom E et al (2003) A homozygous nonsense mutation in the Fukutin gene causes a Walker-Warburg syndrome phenotype. J Med Genet 40:845–848

    Article  PubMed  Google Scholar 

  • Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A et al (2002) Mutations in the O-Mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Beltrán-Valero de Bernabe D, Voit T, Longman C et al (2004) Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J Med Genet 41:e61–e61

    Article  PubMed  Google Scholar 

  • Ben Mahmoud A, Siala O, Ben MR et al (2013) First functional analysis of a novel splicing mutation in the B3GALTL gene by an ex vivo approach in Tunisian patients with typical Peters plus syndrome. Gene 532:13–17

    Article  CAS  PubMed  Google Scholar 

  • Biancheri R, Bertini E, Falace A et al (2006) POMGnT1 mutations in congenital muscular dystrophy genotype-phenotype correlation and expanded clinical Spectrum. Arch Neurol 63:1491–1495

    Article  PubMed  Google Scholar 

  • Bouchet C, Gonzales M, Vuillaumier-Barrot S et al (2007a) Molecular heterogeneity in fetal forms of type II lissencephaly. Hum Mutat 28:1020–1027

    Article  CAS  PubMed  Google Scholar 

  • Bouchet C, Vuillaumier-Barrot S, Gonzales M et al (2007b) Detection of an Alu insertion in the POMT1 gene from three French Walker Warburg syndrome families. Mol Genet Metab 90:93–96

    Article  CAS  PubMed  Google Scholar 

  • Brasseur-Daudruy M, Vivier PH, Ickowicz V et al (2012) Walker-Warburg syndrome diagnosed by findings of typical ocular abnormalities on prenatal ultrasound. Pediatr Radiol 42:488–490

    Article  CAS  PubMed  Google Scholar 

  • Cartault F, Munier P, Jacquemont M-L et al (2015) Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet 23:49–53

    Article  CAS  PubMed  Google Scholar 

  • Chan YM, Keramaris-Vrantsis E, Lidov HG et al (2010) Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Hum Mol Genet 19:3995–4006

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Winder TL, LeDuc CA et al (2009) Founder Fukutin mutation causes Walker-Warburg syndrome in four Ashkenazi Jewish families. Prenat Diagn 29:560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirak S, Foley AR, Herrmann R et al (2013) ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain 136:269–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke NF, Maugenre S, Vandebrouck A et al (2011) Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet 19:452–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement E, Mercuri E, Godfrey C et al (2008a) Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 64:573–582

    Article  CAS  PubMed  Google Scholar 

  • Clement EM, Godfrey C, Tan J, Brockington M (2008b) Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol 65:137–141

    Article  PubMed  Google Scholar 

  • Clements R, Turk R, Campbell KP, Wright KM (2017) Dystroglycan maintains inner limiting membrane integrity to coordinate retinal development. J Neurosci 946–17. https://doi.org/10.1523/JNEUROSCI.0946-17.2017

  • Coman D, Irving M, Kannu P et al (2008) The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet 73:507–515

    Article  CAS  PubMed  Google Scholar 

  • Corso-Díaz X, Borrie AE, Bonaguro R et al (2012) Absence of NR2E1 mutations in patients with aniridia. Mol Vis 18:2770–2782

    PubMed  PubMed Central  Google Scholar 

  • Cotarelo RP, Fano O, Raducu M et al (2009) A double homozygous mutation in the POMT1 gene involving exon skipping gives rise to Walker-Warburg syndrome in two Spanish gypsy families. Clin Genet 76:108–112

    Article  CAS  PubMed  Google Scholar 

  • Cotarelo RP, Valero MC, Prados B et al (2008) Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clin Genet 73:139–145

    Article  CAS  PubMed  Google Scholar 

  • Currier SC, Lee CK, Chang BS et al (2005) Mutations in POMT1 are found in a minority of patients with walker-warburg syndrome. Am J Med Genet 133(A):53–57

    Article  Google Scholar 

  • Czeschik JC, Hehr U, Hartmann B et al (2013) 160kb deletion in ISPD unmasking a recessive mutation in a patient with Walker-Warburg syndrome. Eur J Med Genet 56:689–694

    Article  PubMed  Google Scholar 

  • D’Cruz TS, Weibley BN, Kimball SR, Barber AJ (2012) Post-translational processing of Synaptophysin in the rat retina is disrupted by diabetes. PLoS One 7(9):e44711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danjo Y, Watanabe H, Tisdale AS et al (1998) Alteration of mucin in human conjunctival epithelia in dry eye. Investig Ophthalmol Vis Sci 39:2602–2609

    CAS  Google Scholar 

  • Dassie-Ajdid J, Causse A, Poidvin A et al (2009) Novel B3GALTL mutation in Peters-plus syndrome. Clin Genet 76:490–492

    Article  CAS  PubMed  Google Scholar 

  • de Nie K, Wesseling PMDP et al (2016) Unique presentation of corneal opacity in Peters plus syndrome: an unusual form of Peters anomaly showing tissue repair in serial analysis. Cornea 35:277–280

    Article  PubMed  Google Scholar 

  • Demir E, Gucuyener K, Akturk A et al (2009) An unusual presentation of muscle-eye-brain disease: severe eye abnormalities with mild muscle and brain involvement. Neuromuscul Disord 19:692–695

    Article  PubMed  Google Scholar 

  • Devisme L, Bouchet C, Gonzals M et al (2012) Cobblestone lissencephaly: Neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 135:469–482

    Article  PubMed  Google Scholar 

  • Di Costanzo S, Balasubramanian A, Pond HL et al (2014) POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet 23:5781–5792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diesen C, Saarinen A, Pihko H et al (2004) POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 41:e115–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faiyaz-Ul-Haque M, Zaidi SHE, Al-Ali M et al (2004) A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am J Med Genet A 128A:39–45

    Article  PubMed  Google Scholar 

  • Faletra F, Athanasakis E, Minen F et al (2011) Vertebral defects in patients with Peters plus syndrome and mutations in B3GALTL. Ophthalmic Genet 32:256–258

    Article  CAS  PubMed  Google Scholar 

  • Falsaperla R, Giunta L, Lubrano R et al (2015) Long-term survival in a patient with muscle-eye-brain disease. Neurol Sci 36:2147–2149

    Article  PubMed  Google Scholar 

  • Farnoodian M, Kinter JB, Yadranji Aghdam S et al (2015) Expression of pigment epithelium-derived factor and thrombospondin-1 regulate proliferation and migration of retinal pigment epithelial cells. Physiol Rep 3:e12266–e12266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freeze HH, Eklund EA, Ng BG, Patterson MC (2015) Neurological aspects of human Glycosylation disorders. Annu Rev Neurosci 38:105–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner B, Merry AH, Royle L et al (2001) Structural elucidation of the N- and O-Glycans of human Apolipoprotein(a): role of O-glycans in conferring protease resistance. J Biol Chem 276:22200–22208

    Article  CAS  PubMed  Google Scholar 

  • Gerin I, Ury B, Breloy I et al (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun 7:11534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey C, Clement E, Mein R et al (2007) Refining genotype-phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130:2725–2735

    Article  PubMed  Google Scholar 

  • Guo MH, Stoler J, Lui J et al (2013) Redefining the Progeroid form of Ehlers-Danlos syndrome: report of the fourth patient with B4GALT7 deficiency and review of the literature. Am J Med Genet A 161:2519–2527

    CAS  PubMed Central  Google Scholar 

  • Guzman-Aranguez A, Argüeso P (2010) Structure and biological roles of Mucin-type O-glycans at the ocular surface. Ocul Surf 8:8–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzman-Aranguez A, Woodward AM, Pintor J, Argüeso P (2012) Targeted disruption of core 1 β1,3-galactosyltransferase (C1galt1) induces apical endocytic trafficking in human corneal keratinocytes. PLoS One 7:1–10

    Article  CAS  Google Scholar 

  • Haldeman-Englert CR, Naeem T, Geiger EA et al (2009) A 781-kb deletion of 13q12.3 in a patient with Peters plus syndrome. Am J Med Genet Part A 149:1842–1845

    Article  CAS  Google Scholar 

  • Han J, Townes-Anderson E (2012) Cell specific post-translational processing of Pikachurin, a protein involved in retinal Synaptogenesis. PLoS One 7(12):e50552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanemaaijer N, Dijkhuizen T, Haadsma M et al (2009) A 649 kb microduplication in 1p34.1, including POMGNT1, in a patient with microcephaly, coloboma and laryngomalacia; and a review of the literature. Eur J Med Genet 52:116–119

    Article  PubMed  Google Scholar 

  • Hehr U, Uyanik G, Gross C et al (2007) Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 8:279–288

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Keusch JJ, Lesnik Oberstein SA et al (2008) Peters plus syndrome is a new congenital disorder of glycosylation and involves defective O-glycosylation of thrombospondin type 1 repeats. J Biol Chem 283:7354–7360

    Article  CAS  PubMed  Google Scholar 

  • Hiscott P, Paraoan L, Choudhary A et al (2006) Thrombospondin 1, thrombospondin 2 and the eye. Prog Retin Eye Res 25:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hoang QV, Blair MP, Rahmani B et al (2011) Multiple retina holes and peripheral nonperfusion in muscle-eye-brain disease. Arch Ophthalmol 129:2011–2013

    Article  Google Scholar 

  • Hu H, Candiello J, Zhang P et al (2010) Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Mol Vis 16:1415–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imbert Y, Jumblatt MM, Foulks GN et al (2006) Expression in human ocular surface tissues of the GalNAc-Transferases that initiate. Cornea 25:1193–1199

    Article  PubMed  Google Scholar 

  • Jae LT, Raaben M, Riemersma M et al (2013) Deciphering the Glycosylome of Dystroglycanopathies using haploid screens for Lassa virus entry. Science (80-) 340:479–483

    Article  CAS  Google Scholar 

  • Jaeken J, Péanne R (2017) What is new in CDG? J Inherit Metab Dis 40:569–586

    Article  CAS  PubMed  Google Scholar 

  • Jeong S, Patel N, Edlund CK et al (2015) Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension. Investig Ophthalmol Vis Sci 56:2737–2748

    Article  CAS  Google Scholar 

  • Jiao H, Manya H, Wang S et al (2013) Novel POMGnT1 mutations cause muscle-eye-brain disease in Chinese patients. Mol Gen Genomics 288:297–308

    Article  CAS  Google Scholar 

  • Jones KL, Schwarze U, Adam MP et al (2015) A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, extending the number of Linkeropathy syndromes. Am J Med Genet A 167:2691–2696

    Article  CAS  PubMed Central  Google Scholar 

  • Judaš M, Sedmak G, Radoš M et al (2009) POMT1-associated walker-warburg syndrome: a disorder of dendritic development of neocortical neurons. Neuropediatrics 40:6–14

    Article  PubMed  Google Scholar 

  • Kapoor S, Mukherjee SB, Arora R, Shroff D (2008) Peters plus syndrome. Indian J Pediatr 75:635–637

    Article  PubMed  Google Scholar 

  • Kava M, Chitayat D, Blaser S et al (2013) Eye and brain abnormalities in congenital muscular dystrophies caused by fukutin-related protein gene (FKRP) mutations. Pediatr Neurol 49:374–378

    Article  PubMed  Google Scholar 

  • Kawahara G, Guyon JR, Nakamura Y, Kunkel LM (2010) Zebrafish models for human FKRP muscular dystrophies. Hum Mol Genet 19:623–633

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Hayashi YK, Matsumoto H et al (2004) POMT1 mutation results in defective glycosylation and loss of laminin-binding activity in alpha-DG. Neurology 62:1009–1011

    Article  CAS  PubMed  Google Scholar 

  • Kingsley PD, Hagen KG, Maltby KM et al (2000) Diverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development. Glycobiology 10:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Kondo-Lida E, Kobayashi K, Watanabe M et al (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8:2303–2309

    Article  Google Scholar 

  • Kondo H, Saito K, Urano M et al (2010) A case of Fukuyama congenital muscular dystrophy associated with negative electroretinograms. Jpn J Ophthalmol 54:622–624

    Article  PubMed  Google Scholar 

  • Kurahashi H, Taniguchi M, Meno C et al (2005) Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol Dis 19:208–217

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara N, Manya H, Yamada T et al (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O -mannosylation sites of α-dystroglycan. PNAS 113:9280–9285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Kameya S, Cox GA et al (2005) Ocular abnormalities in Largemyd and Largevls mice, spontaneous models for muscle, eye, and brain diseases. Mol Cell Neurosci 30:160–172

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre T, Planque N, Leleu D et al (2002) O-glycosylation of the nuclear forms of Pax-6 products in quail neuroretina cells. J Cell Biochem 85:208–218

    Article  CAS  PubMed  Google Scholar 

  • Lesnik Oberstein SAJ, Kriek M, White SJ et al (2006) Peters plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet 79:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Ball SL, Yang Y et al (2006) A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 123:228–240

    Article  CAS  PubMed  Google Scholar 

  • Longman C, Brockington M, Torelli S et al (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of α-dystroglycan. Hum Mol Genet 12:2853–2861

    Article  CAS  PubMed  Google Scholar 

  • Louhichi N, Triki C, Quijano-Roy S et al (2004) New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 5:27–34

    Article  CAS  PubMed  Google Scholar 

  • Malfait F, Kariminejad A, Van Damme T et al (2013) Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am J Hum Genet 92:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzini MC, Gleason D, Chang BS et al (2008) Ethnically diverse causes of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum Mutat 29:E231–E241

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques-da-Silva D, dos Reis FV, Monticelli M et al (2017a) Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 40:195–207

    Article  CAS  PubMed  Google Scholar 

  • Marques-da-Silva D, Francisco R, Webster D et al (2017b) Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J Inherit Metab Dis. https://doi.org/10.1007/s10545-017-0066-y

  • Matsumoto H, Hayashi YK, Kim DS et al (2005) Congenital muscular dystrophy with glycosylation defects of α-dystroglycan in Japan. Neuromuscul Disord 15:342–348

    Article  PubMed  Google Scholar 

  • Meilleur KG, Zukosky K, Medne L et al (2014) Clinical, pathologic, and mutational Spectrum of Dystroglycanopathy caused by LARGE mutations. J Neuropathol Exp Neurol 73:425–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercuri E, Messina S, Bruno C et al (2009) Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 72:1802–1809

    Article  CAS  PubMed  Google Scholar 

  • Mercuri E, Topaloglu H, Brockington M et al (2006) Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch Neurol 63:251–257

    Article  PubMed  Google Scholar 

  • Monticelli M, Ferro T, Jaeken J et al (2016) Immunological aspects of congenital disorders of glycosylation (CDG): a review. J Inherit Metab Dis 39:765–780

    Article  CAS  PubMed  Google Scholar 

  • Morava E, Wosik H, Sykut-Cegielska J et al (2009) Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol 93:350–354

    Article  CAS  PubMed  Google Scholar 

  • Munns CF, Fahiminiya S, Poudel N et al (2015) Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet 96:971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima M, Mizumoto S, Miyake N et al (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 92:927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nycholat CM, McBride R, Ekiert DC et al (2012) Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza a virus hemagglutinins. Angew Chem Int Ed Engl 51:4860–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsuka Y, Kanagawa M, Yu C-C et al (2015) Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Sci Rep 9 5:8316

    Article  CAS  Google Scholar 

  • Pascual-Castroviejo I, Pascual-Pascual SI, Gutiérrez-Molina M et al (2005) Trastorno músculo-ojo-cerebro. Presentación de un caso con estudio genético. Neurologia 20:261–266

    CAS  PubMed  Google Scholar 

  • Patnaik SK, Stanley P (2005) Mouse large can modify complex N- and mucin O-glycans on α-dystroglycan to induce laminin binding. J Biol Chem 280:20851–20859

    Article  CAS  PubMed  Google Scholar 

  • Prados B, Peña A, Cotarelo RP et al (2007) Expression of the murine Pomt1 gene in both the developing brain and adult muscle tissues and its relationship with clinical aspects of Walker-Warburg syndrome. Am J Pathol 170:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raducu M, Cotarelo RP, Simón R et al (2013) Clinical features and molecular characterization of a patient with muscle-eye-brain disease: a novel mutation in the POMGNT1 gene. J Child Neurol 29:289–294

    Article  PubMed  Google Scholar 

  • Reis LM, Tyler RC, Abdul-Rahman O et al (2008) Mutation analysis of B3GALTL in Peters plus syndrome. Am J Med Genet A 146A:2603–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roscioli T, Kamsteeg E, Buysse K, Maystadt I (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 44:581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rurak J, Noel G, Lui L et al (2007) Distribution of potassium ion and water permeable channels at perivascular glia in brain and retina of the Largemyd mouse. J Neurochem 103:1940–1953

    Article  CAS  PubMed  Google Scholar 

  • Salter CG, Davies JH, Moon RJ et al (2016) Further defining the phenotypic spectrum of B4GALT7 mutations. Am J Med Genet Part A 170A:1556–1563

    Article  CAS  Google Scholar 

  • Saredi S, Ardissone A, Ruggieri A et al (2012) Novel POMGNT1 point mutations and intragenic rearrangements associated with muscle-eye-brain disease. J Neurol Sci 318:45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schollhorn L, Bock F, Cursiefen C (2015) Thrombospondin-1 as a regulator of corneal inflammation and Lymphangiogenesis: effects on dry eye disease and corneal graft immunology. J Ocul Pharmacol Ther 31:376–385

    Article  PubMed  CAS  Google Scholar 

  • Schoner K, Kohlhase J, Müller AM et al (2013) Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters’ plus syndrome and B3GALTL mutations- Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn 33:75–80

    Article  CAS  PubMed  Google Scholar 

  • Sellars EA, Bosanko KA, Lepard T et al (2014) A newborn with complex skeletal abnormalities, joint contractures, and bilateral corneal clouding with sclerocornea. Semin Pediatr Neurol 21:84–87

    Article  PubMed  Google Scholar 

  • Shenoy AM, Markowitz JA, Bonnemann CG et al (2010) Muscle-eye-brain disease. J Clin Neuromuscul Dis 11:124–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Siala O, Belguith N, Kammoun H et al (2012) Two Tunisian patients with Peters plus syndrome harbouring a novel splice site mutation in the B3GALTL gene that modulates the mRNA secondary structure. Gene 507:68–73

    Article  CAS  PubMed  Google Scholar 

  • Silan F, Yoshioka M, Kobayashi K et al (2003) A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 53:392–396

    Article  CAS  PubMed  Google Scholar 

  • Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103:467–479

    Article  CAS  PubMed  Google Scholar 

  • Stevens E, Carss KJ, Cirak S et al (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 92:354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Kanesaki H, Igarashi T et al (2011) Reactive gliosis of astrocytes and Müller glial cells in retina of POMGnT1-deficient mice. Mol Cell Neurosci 47:119–130

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Kono M, Sasaki J et al (2003) Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet 12:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Takeichi T, Nanda A, Aristodemou S et al (2015) Whole-exome sequencing diagnosis of two autosomal recessive disorders in one family. Br J Dermatol 172:1407–1411

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Kobayashi K, Saito K et al (2003) Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum Mol Genet 12:527–534

    Article  CAS  PubMed  Google Scholar 

  • Taylan F, Costantini A, Coles N et al (2016) Spondyloocular syndrome: novel mutations in XYLT2 gene and Expansion of the phenotypic Spectrum. J Bone Miner Res 31:1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Teber S, Sezer T, Kafali M et al (2008) Severe muscle-eye-brain disease is associated with a homozygous mutation in the POMGnT1 gene. Eur J Paediatr Neurol 12:133–136

    Article  PubMed  Google Scholar 

  • Thornhill P, Bassett D, Lochmüller H et al (2008) Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP). Brain 131:1551–1561

    Article  PubMed  Google Scholar 

  • Toda T, Yoshioka M, Nakahori Y et al (1995) Genetic identity of Fukuyama-type congenital muscular dystrophy and Walker-Warburg syndrome. Ann Neurol 37:99–101

    Article  CAS  PubMed  Google Scholar 

  • Trovato R, Astrea G, Bartalena L et al (2014) Elevated serum Creatine Kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations. J Child Neurol 29:394–398

    Article  PubMed  Google Scholar 

  • Uribe ML, Haro C, Ventero MP et al (2016) Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis 22:658–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vajsar J, Baskin B, Swoboda K et al (2008) Walker-Warburg syndrome with POMT1 mutations can be associated with cleft lip and cleft palate. Neuromuscul Disord 18:675–677

    Article  PubMed  Google Scholar 

  • van Reeuwijk J, Jansen M, van den Elzen C et al (2005) POMT2 mutations cause -dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet 42:907–912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Reeuwijk J, Maugenre S, van den Elzen C et al (2006) The expanding phenotype of mutations: FromWalker-Warburg syndrome to congenital muscular dystrophy, Microcephaly, POMT1 and mental retardation. Hum Mutat 27:453–459

    Article  PubMed  CAS  Google Scholar 

  • van Reeuwijk J, Grewal PK, Salih MAM et al (2007) Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet 121:685–690

    Article  PubMed  PubMed Central  Google Scholar 

  • van Reeuwijk J, Olderode-Berends MJW, van den Elzen C et al (2010) A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clin Genet 78:275–281

    Article  PubMed  CAS  Google Scholar 

  • van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked Glycosylation. Crit Rev Biochem Mol Biol 33:151–208

    Article  PubMed  Google Scholar 

  • Vasudevan D, Takeuchi H, Johar SS et al (2015) Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Curr Biol 25:286–295

    Article  CAS  PubMed  Google Scholar 

  • Vervoort VS, Holden KR, Ukadike KC et al (2004) POMGnT1 gene alterations in a family with neurological abnormalities. Ann Neurol 56:143–148

    Article  CAS  PubMed  Google Scholar 

  • von Oettingen JE, Tan W-H, Dauber A, Von Oettingen J (2014) Skeletal dysplasia, global developmental delay, and multiple congenital anomalies in a 5 year-old boy– report of the second family with B3GAT3 mutation and expansion of the phenotype. Am J Med Genet A 164A(6):1580–1586

    Article  CAS  Google Scholar 

  • von Renesse A, Petkova MV, Lützkendorf S et al (2014) POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 51:275–282

    Article  CAS  Google Scholar 

  • Vuillaumier-Barrot S, Bouchet-Seraphin C, Chelbi M et al (2011) Intragenic rearrangements in LARGE and POMGNT1 genes in severe dystroglycanopathies. Neuromuscul Disord 21:782–790

    Article  CAS  PubMed  Google Scholar 

  • Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M et al (2012) Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet 91:1135–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuillaumier-Barrot S, Quijano-Roy S, Bouchet-Seraphin C et al (2009) Four Caucasian patients with mutations in the fukutin gene and variable clinical phenotype. Neuromuscul Disord 19:182–188

    Article  CAS  PubMed  Google Scholar 

  • Wang NHH, Chen SJ, Yang CF et al (2016) Homozygosity mapping and whole-genome sequencing links a missense mutation in POMGNT1 to autosomal recessive retinitis pigmentosa. Investig Ophthalmol Vis Sci 57:3601–3609

    Article  CAS  Google Scholar 

  • Weh E, Reis LM, Tyler RC et al (2014) Novel B3GALTL mutations in classic Peters plus syndrome and lack of mutations in a large cohort of patients with similar phenotypes. Obesity 86:142–148

    CAS  Google Scholar 

  • Willer T, Lee H, Lommel M et al (2012) ISPD loss-of-function mutations disrupt dystroglycan O- mannosylation and cause Walker-Warburg syndrome. Nat Genet 44:575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willer T, Prados B, Falcón-Pérez JM et al (2004) Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci U S A 101:14126–14131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood AJ, Müller JS, Jepson CD et al (2011) Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Hum Mol Genet 20:4879–4890

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Lu PJ, Wang C-H et al (2013) Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Mol Ther 21:1832–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Yamada T, Sun Z et al (2016) Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 25:1–10

    Article  CAS  Google Scholar 

  • Xu Z, Weiss A (2002) Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol 3:764–771

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa A, Bouchet C, Quijano-Roy S et al (2009) POMT2 intragenic deletions and splicing abnormalities causing congenital muscular dystrophy with mental retardation. Eur J Med Genet 52:201–206

    Article  PubMed  Google Scholar 

  • Yanagisawa A, Bouchet C, Van Den Bergh PYK et al (2007) New POMT2 mutations causing congenital muscular dystrophy : identification of a founder mutation new POMT2 mutations causing congenital muscular dystrophy identification of a founder mutation. Neurology 69:1254–1260

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Manya H, Kobayashi K et al (2016) Analysis of phenotype, enzyme activity and genotype of Chinese patients with POMT1 mutation. J Hum Genet Adv 61(8):753–759

    Article  CAS  Google Scholar 

  • Yis U, Uyanik G, Heck PB et al (2011) Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype. Neuromuscul Disord 21:20–30

    Article  PubMed  Google Scholar 

  • Yis U, Uyanik G, Kurul S et al (2007) A case of Walker-Warburg syndrome resulting from a homozygous POMT1 mutation. Eur J Paediatr Neurol 11:46–49

    Article  PubMed  Google Scholar 

  • Yiş U, Uyanik G, Rosendahl DM et al (2014) Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. Pediatr Neurol 50:491–497

    Article  PubMed  Google Scholar 

  • Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al (2010) O-Mannosyl Phosphorylation of Alpha-Dystroglycan is Required for Laminin Binding 327:88–92

  • Yoshioka M, Tatsushi T, Shigekazu K, Kenzo H (1999) Broader clinical Spectrum of Fukuyama-type congenital muscular dystrophy manifested by Haplotype analysis. J Child Neurol 14:711–715

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Vajsar J, Cao P et al (2003) Enzymatic diagnostic test for muscle-eye-brain type congenital muscular dystrophy using commercially available reagents. Clin Biochem 36:339–344

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Wang H, Ren H et al (2017) Large is required for normal astrocyte migration and retinal vasculature development. Cell Biosci 17 7:–18

Download references

Funding

This work was supported by the CDG Professionals and Patient Associations International Network (CDG & Allies – PPAIN) and Liliana Fellowships from APCDG attributed to Marques-da-Silva D. Francisco R. was supported by Fundação para a Ciência e Tecnologia (FCT). The authors confirmed independence from sponsors; the content of the article has not been influenced by sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa dos Reis Ferreira.

Ethics declarations

Conflict of interests

R. Francisco, C. Pascoal, D. Marques-da-Silva, E. Morava, G. A. Gole, D. Coman, J. Jaeken, and V. dos Reis Ferreira declare that they have no conflict of interest.

Animal rights

This review does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

No human studies were performed for this study.

Additional information

Responsible Editor: Ertan Mayatepek

Electronic supplementary material

ESM 1

(DOCX 13 kb)

ESM 2

(JPEG 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francisco, R., Pascoal, C., Marques-da-Silva, D. et al. Keeping an eye on congenital disorders of O-glycosylation: a systematic literature review. J Inherit Metab Dis (2018). https://doi.org/10.1007/s10545-017-0119-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10545-017-0119-2

Navigation