Skip to main content
Log in

Neural cells generated from human induced pluripotent stem cells as a model of CNS involvement in mucopolysaccharidosis type II

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mucopolysaccharidosis type II (MPSII) is a rare X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene (IDS, Xq28). MPSII is characterized by skeletal deformities, hearing loss, airway obstruction, hepatosplenomegaly, cardiac valvular disease, and progressive neurological impairment. At the cellular level, IDS deficiency leads to lysosomal storage of glycosaminoglycans (GAGs), dominated by accumulation of dermatan and heparan sulfates. Human induced pluripotent stem cells (iPSC) represent an alternative system that complements the available MPSII murine model. Herein we report on the reprogramming of peripheral white blood cells from male and female MPSII patients into iPSC using a non-integrating protocol based on the Sendai virus vector system. We differentiated the iPSC lines into IDS deficient and GAG accumulating β-Tubulin III+ neurons, GFAP+ astrocytes, and CNPase+ oligodendrocytes. The lysosomal system in these cells displayed structural abnormalities reminiscent of those previously found in patient tissues and murine IDS deficient neuronal stem cells. Furthermore, quantitative determination of GAGs revealed a moderate increase in GAG levels in IDS deficient neurons and glia. We also tested the effects of recombinant IDS and found that the exogenous enzyme was internalized from the culture media and partially decreased the intracellular GAG levels in iPSC-derived neural cells; however, it failed to completely prevent accumulation of GAGs. In summary, we demonstrate that this human iPSC based model expresses the cellular and biochemical features of MPSII, and thus represents a useful experimental tool for further pathogenesis studies as well as therapy development and testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

BBB:

blood brain barrier

bFGF:

basic fibroblast growth factor

βTubIII:

β-Tubulin III

CNPase:

2′,3′-cyclic-nucleotide 3′-phosphodiesterase

EB:

embryoid bodies

ERT:

enzyme replacement therapy

FGF-8:

fibroblast growth factor 8

GAG:

glycosaminoglycans

GFAP:

glial fibrillary acidic protein

HS:

heparan sulfate

IDS:

iduronate-2-sulfatase

iPSC:

induced pluripotent stem cells

LAMP1:

lysosomal-associated membrane protein 1

MAP2:

microtubule-associated protein 2

MPS:

mucopolysaccharidoses

NPC:

neural progenitor cells

PBMC:

peripheral blood mononuclear cells

P/S:

Penicillin-Streptomycin

TH:

tyrosine hydroxylase

XCI:

X-chromosome inactivation

CDM:

complete differentiation medium

References

  • All AH, Gharibani P, Gupta S et al (2015) Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One 10:e0116933

    Article  PubMed  PubMed Central  Google Scholar 

  • Boado RJ, Hui EK, Lu JZ, Sumbria RK, Pardridge WM (2013) Blood-brain barrier molecular trojan horse enables imaging of brain uptake of radioiodinated recombinant protein in the rhesus monkey. Bioconjug Chem 24:1741–1749

    Article  CAS  PubMed  Google Scholar 

  • Canfield SG, Stebbins MJ, Morales BS et al (2017) An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem 140:874–888

    Article  CAS  PubMed  Google Scholar 

  • Cardone M, Polito VA, Pepe S et al (2006) Correction of hunter syndrome in the MPSII mouse model by AAV2/8-mediated gene delivery. Hum Mol Genet 15:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Riazifar H, Guan MX, Huang T (2016) Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Fusar Poli E, Zalfa C, D'Avanzo F et al (2013) Murine neural stem cells model hunter disease in vitro: glial cell-mediated neurodegeneration as a possible mechanism involved. Cell Death Dis 4:e906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher JT (2006) Multiprotein signalling complexes: regional assembly on heparan sulphate. Biochem Soc Trans 34:438–441

    Article  CAS  PubMed  Google Scholar 

  • Gomes IC, Acquarone M, Maciel Rde M, Erlich RB, Rehen SK (2010) Analysis of pluripotent stem cells by using cryosections of embryoid bodies. J Vis Exp. doi: 10.3791/2344

  • Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427

    Article  CAS  PubMed  Google Scholar 

  • Itier JM, Ret G, Viale S et al (2014) Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease. J Inherit Metab Dis 37:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Jakobkiewicz-Banecka J, Gabig-Ciminska M, Kloska A et al (2016) Glycosaminoglycans and mucopolysaccharidosis type III. Front Biosci (Landmark Ed) 21:1393–1409

    Article  Google Scholar 

  • Jones SA, Parini R, Harmatz P, Giugliani R, Fang J, Mendelsohn NJ (2013) The effect of idursulfase on growth in patients with hunter syndrome: data from the hunter outcome survey (HOS). Mol Genet Metab 109:41–48

    Article  CAS  PubMed  Google Scholar 

  • de Jong JG, Wevers RA, Liebrand-van Sambeek R (1992) Measuring urinary glycosaminoglycans in the presence of protein: an improved screening procedure for mucopolysaccharidoses based on dimethylmethylene blue. Clin Chem 38:803–807

    PubMed  Google Scholar 

  • Meier C, Wismann U, Herschkowitz N, Bischoff A (1979) Morphological observations in the nervous system of prenatal mucopolysaccharidosis II (M. Hunter). Acta Neuropathol 48:139–143

    Article  CAS  PubMed  Google Scholar 

  • Meng XL, Shen JS, Kawagoe S, Ohashi T, Brady RO, Eto Y (2010) Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders. Proc Natl Acad Sci U S A 107:7886–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motas S, Haurigot V, Garcia M et al (2016) CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (hunter syndrome). JCI Insight 1:e86696

    Article  PubMed  PubMed Central  Google Scholar 

  • Muenzer J, Lamsa JC, Garcia A, Dacosta J, Garcia J, Treco DA (2002) Enzyme replacement therapy in mucopolysaccharidosis type II (hunter syndrome): a preliminary report. Acta Paediatr Suppl 91:98–99

    Article  CAS  PubMed  Google Scholar 

  • Muenzer J, Beck M, Eng CM et al (2011) Long-term, open-labeled extension study of idursulfase in the treatment of hunter syndrome. Gen Med: Off J Am Coll Med Gen 13:95–101

    CAS  Google Scholar 

  • Neufeld EF, Muenzer J (2001) The Mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 3421–3452

    Google Scholar 

  • Noh H, Lee JI (2014) Current and potential therapeutic strategies for mucopolysaccharidoses. J Clin Pharm Ther 39:215–224

    Article  CAS  PubMed  Google Scholar 

  • Okuyama T, Tanaka A, Suzuki Y et al (2010) Japan Elaprase treatment (JET) study: idursulfase enzyme replacement therapy in adult patients with attenuated hunter syndrome (mucopolysaccharidosis II, MPS II). Mol Genet Metab 99:18–25

  • Patel P, Suzuki Y, Tanaka A et al (2014) Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with hunter syndrome. Mol Gen Metab Rep 1:184–196

    CAS  Google Scholar 

  • Perrimon N, Bernfield M (2001) Cellular functions of proteoglycans--an overview. Semin Cell Dev Biol 12:65–67

    Article  CAS  PubMed  Google Scholar 

  • Polito VA, Cosma MP (2009) IDS crossing of the blood-brain barrier corrects CNS defects in MPSII mice. Am J Hum Genet 85:296–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polito VA, Abbondante S, Polishchuk RS, Nusco E, Salvia R, Cosma MP (2010) Correction of CNS defects in the MPSII mouse model via systemic enzyme replacement therapy. Hum Mol Genet 19:4871–4885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo FB, Cugola FR, Fernandes IR, Pignatari GC, Beltrao-Braga PC (2015) Induced pluripotent stem cells for modeling neurological disorders. World J Transplant 5:209–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3:a004952

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoog WA, Beck WS (1956) Studies on the fibrinogen, dextran and phytohemagglutinin methods of isolating leukocytes. Blood 11:436–454

    CAS  PubMed  Google Scholar 

  • Stacpoole SR, Bilican B, Webber DJ et al (2011) Efficient derivation of NPCs, spinal motor neurons and midbrain dopaminergic neurons from hESCs at 3% oxygen. Nat Protoc 6:1229–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S, (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126 (4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

  • Tanaka A, Okuyama T, Suzuki Y et al (2012) Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab 107:513–520

    Article  CAS  PubMed  Google Scholar 

  • Varki A (1999) Essentials of glycobiology, vol xvii. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 653

  • Voznyi YV, Keulemans JL, van Diggelen OP (2001) A fluorimetric enzyme assay for the diagnosis of MPS II (hunter disease). J Inherit Metab Dis 24:675–680

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann UN, Spycher MA, Meier C, Liebaers I, Herschkowitz N (1980) Prenatal mucopolysaccharidosis II (hunter): a pathogenetic study. Pediatr Res 14:749–756

    Article  CAS  PubMed  Google Scholar 

  • Wraith JE, Scarpa M, Beck M et al (2008) Mucopolysaccharidosis type II (hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr 167:267–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Irena Knesplova and Dr. Filip Majer for their technical assistance and Dr. Martin Magner for assistance with collection of patient samples and clinical evaluation.

Funding

This work was funded by a research grant of the Medical Research Agency of The Czech Republic, AZV ČR 15-33297A.

The authors confirm independence from the sponsors; the content of the article was not influenced by the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Dobrovolný.

Ethics declarations

Competing interest

Jitka Rybova, Robert Dobrovolny, Jana Ledvinova, Jakub Sikora and Ladislav Kuchar declare no competing interests but disclose the following: Robert Dobrovolny and Jitka Rybova have received honoraria for lectures and/or hotel/travel expenses for relevant meetings from Shire, plc.

Animal rights

This article does not contain any studies with animal subjects performed by any of the authors.

Conflict of interest

J. Rybova, J. Ledvinova, J. Sikora, L. Kuchar, R. Dobrovolny declare that they have no conflict of interest.

Additional information

Communicated by: Jaak Jaeken

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybová, J., Ledvinová, J., Sikora, J. et al. Neural cells generated from human induced pluripotent stem cells as a model of CNS involvement in mucopolysaccharidosis type II. J Inherit Metab Dis 41, 221–229 (2018). https://doi.org/10.1007/s10545-017-0108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-017-0108-5

Navigation