Journal of Inherited Metabolic Disease

, Volume 40, Issue 4, pp 569–586 | Cite as

What is new in CDG?

  • Jaak JaekenEmail author
  • Romain Péanne
SSIEM 2016


Congenital disorders of glycosylation (CDG) are one group among the disorders of glycosylation. The latter comprise defects associated with hypoglycosylation but also defects with hyperglycosylation. Genetic diseases with hypoglycosylation can be divided in primary congenital disorders of glycosylation (CDG) and in genetic diseases causing secondary hypoglycosylation. This review covers the human CDG highlights from the last 3 years (2014–2016) following a summary of the actual status of CDG. It expands on 23 novel CDG namely defects in SLC39A8, CAD, NANS, PGM3, SSR4, POGLUT1, NUS1, GANAB, PIGY, PIGW, PIGC, PIGG, PGAP1, PGAP3, VPS13B, CCDC115, TMEM199, ATP6AP1, ATP6V1A, ATP6V1E1, TRAPPC11, XYLT1 and XYLT2. Besides, it discusses novel phenotypes of known CDG (DHDDS-CDG, ALG9-CDG, EXT2-CDG, PIGA-CDG, PIGN-CDG), the elucidation of putative glycosyltransferase disorders as O-mannosylglycan synthesis disorders (TMEM5-CDG, ISPD-CDG, FKTN-CDG, FKRP-CDG), a novel CDG mechanism, advances in diagnosis, pathogenesis, treatment and finally an updated list of the 104 known CDG.



Apolipoprotein C-III




Congenital disorder(s) of glycosylation


Capillary zone electrophoresis


Endoplasmic reticulum


ER-Golgi intermediate compartment









This work was supported by grants from the Research Foundation (FWO, Flanders (G.0553.08 and G.0505.12) and from the European Union’s Horizon 2020 research and innovation program under the ERA-NET Cofund action N° 643578. It was supported by FWO Belgium, under the frame of E-Rare-3, the ERA-Net for Research on Rare Diseases (EURO-CDG-2 project). Romain Péanne is a postdoctoral researcher of the FWO.

Author contribution

Both authors have been involved in the conception, the design, and the drafting of the article.

Compliance with ethics standards

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

J. Jaeken and R. Péanne declare that they have no conflict of interest.


  1. Aeby A, Prigogine C, Vilain C, Malfilatre G, Jaeken J, Lederer D, Van Bogaert P (2016) RFT1-congenital disorder of glycosylation (CDG): a cause of early-onset severe epilepsy. Epileptic Disord 18:92–96PubMedGoogle Scholar
  2. AlSubhi S, AlHashem A, AlAzami A et al (2015) Further delineation of the ALG9-CDG phenotype. JIMD Rep 27:107–112CrossRefPubMedPubMedCentralGoogle Scholar
  3. Argov Z, Caraco Y, Lau H et al (2016) Aceneuramic acid extended release administration maintains upper limb muscle strength in a 48-week study of subjects with GNE myopathy: results from a phase 2, randomized, controlled study. J Neuromuscul Dis 3:49–66CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barone R, Fiumara A, Jaeken J (2014) Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol 34:357–366CrossRefPubMedGoogle Scholar
  5. Basmanav FB, Oprisoreanu AM, Pasternack SM et al (2014) Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Am J Hum Genet 94:135–143CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bengtson P, Ng BG, Jaeken J, Matthijs G, Freeze HH, Eklund EA (2016) Serum transferrin carrying the xeno-tetrasaccharide NeuAc-gal-GlcNAc2 is a biomarker of ALG1-CDG. J Inherit Metab Dis 39:107–114CrossRefPubMedGoogle Scholar
  7. Bögershausen N, Shahrzad N, Chong JX et al (2013) Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am J Hum Genet 93:181–190CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boycott KM, Beaulieu CL, Kernohan KD et al (2015) Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet 97:886–893CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buczkowska A, Swiezewska E, Lefeber DJ (2015) Genetic defects in dolichol metabolism. J Inherit Metab Dis 38:157–169CrossRefPubMedGoogle Scholar
  10. Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y (2014) Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with west syndrome and hyperphosphatasia with mental retardation; syndrome. J Med Genet 51:203–207CrossRefPubMedGoogle Scholar
  11. Climer LK, Dobretsov M, Lupashin V (2015) Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front Neurosci. doi: 10.3389/fnins.2015.00405 PubMedPubMedCentralGoogle Scholar
  12. Dörre K, Olczak M, Wada Y et al (2015) A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis 38:931–940CrossRefPubMedGoogle Scholar
  13. Duplomb L, Duvet S, Picot D et al (2014) Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 23:2391–2399CrossRefPubMedGoogle Scholar
  14. Edvardson S, Murakami Y, Nguyen TTM et al (2016) Mutations in the phosphatidylinositol glycan C (PIGC) gene are associated with epilepsy and intellectual disability. J Med Genet. doi: 10.1136/jmedgenet-2016-104202 PubMedCentralGoogle Scholar
  15. Farhan SMK, Wang J, Robinson JF et al (2015) Old gene, new phenotype: mutations in heparan sulfate synthesis enzyme, EXT2 leads to seizure and developmental disorder, no exostoses. J Med Genet 52:666–675CrossRefPubMedGoogle Scholar
  16. Fauth C, Steindl K, Toutain A et al (2016) A recurrent germline mutation in the PIGA gene causes Simpson-Golabi-Behmel syndrome type 2. Am J Med Genet Part A 170A:392–402CrossRefPubMedGoogle Scholar
  17. Freeze HH, Chong JX, Bamshad MJ, Ng BG (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94:161–175CrossRefPubMedPubMedCentralGoogle Scholar
  18. Freeze HH, Eklund EA, Ng BG, Patterson MC (2015) Neurological aspects of human glycosylation disorders. Ann Rev Neurosci 38:105–125CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gerin I, Ury B, Breloy I et al (2016) ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun. doi: 10.1038/ncomms11534 PubMedPubMedCentralGoogle Scholar
  20. Guo L, Elcioglu NH, Iida A et al (2016) Novel and recurrent XYLT1 mutations in two Turkish families with Desbuquois dysplasia, type 2. J Hum Genet. doi: 10.1038/jhg.2016.143 Google Scholar
  21. Gupta S, Fahiminiya S, Wang T et al (2016) Somatic overgrowth associated with homozygous mutations in both MAN1B1 and SEC23A. Cold Spring Harb Mol Case Stud. doi: 10.1101/mcs.a000737 PubMedPubMedCentralGoogle Scholar
  22. Hennet T, Cabalzar J (2015) Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 40:377–384CrossRefPubMedGoogle Scholar
  23. Höck M, Wegleiter K, Ralser E et al (2015) ALG8-CDG: novel patients and review of the literature. Orphanet J Rare Dis 10:73. doi: 10.1186/s13023-015-0289-7 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hogrebe M, Murakami Y, Wild M et al (2016) A novel mutation in PIGW causes glycosylphosphatidylinositol deficiency without hyperphosphatasia. Am J Med Genet Part A 170A:3319–3322CrossRefGoogle Scholar
  25. Ilkovski B, Pagnamenta AT, O'Grady GL et al (2015) Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Hum Mol Genet 24:6146-6159Google Scholar
  26. Jaeken J, Morava E (2016) Congenital disorders of glycosylation, dolichol and glycosylphosphatidylinositol metabolism. In: Saudubray J-M, Baumgartner MR, Walter J (eds) Inborn metabolic diseases diagnosis and treatment, Chap. 41, 6th edn. Springer, Berlin Google Scholar
  27. Jaeken J, Hennet T, Matthijs G, Freeze HH (2009) CDG nomenclature: time for a change! Biochim Biophys Acta 1792:825–826CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jansen JC, Cirak S, van Scherpenzeel M et al (2016a) CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 98:310–321CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jansen JC, Timal S, van Scherpenzeel M et al (2016b) TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 98:322–330CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jansen EJR, Timal S, Ryan M et al (2016c) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun. doi: 10.1038/ncomms11600 Google Scholar
  31. Kanagawa M, Kobayashi K, Tajiri M et al (2016) Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep 14:2209–2223CrossRefPubMedGoogle Scholar
  32. van Karnebeek CDM, Bonafé L, Wen X-Y et al (2016) NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 48:777–784CrossRefPubMedGoogle Scholar
  33. Kettwig M, Elpeleg O, Wegener E et al (2016) Compound heterozygous variants in PGAP1 causing severe psychomotor retardation, brain atrophy, recurrent apneas and delayed myelination: a case report and literature review. BMC Neurol 16:74CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kimizu T, Takahashi Y, Oboshi T et al (2016) A case of early onset epileptic encephalopathy with de novo mutation in SLC35A2: clinical features and treatment for epilepsy. Brain and Development. doi: 10.1016/j.braindev.2016.09.009 PubMedGoogle Scholar
  35. Knaus A, Awaya T, Helbig I et al (2016) Rare noncoding mutations extend the mutational spectrum in the PGAP3 subtype of hyperphosphatasia with mental retardation syndrome. Hum Mutat 37:737–744CrossRefPubMedPubMedCentralGoogle Scholar
  36. Koch J, Mayr JA, Alhaddad B et al (2017) CAD mutations and uridine-responsive epileptic encephalopathy. Brain 140(Pt 2):279–286Google Scholar
  37. Kodera H, Nakamura K, Osaka H et al (2013) De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat 34:1708–1714CrossRefPubMedGoogle Scholar
  38. Koehler K, Milev MP, Prematilake K et al (2017) A novel TRAPPC11 mutation in two Turkish families associated with cerebral atrophy, global retardation, scoliosis, achalasia and alacrima. J Med Genet 54:176–185CrossRefPubMedGoogle Scholar
  39. Kouwenberg D, Gardeitchik T, Mohamed M, Lefeber DJ, Morava E (2014) Wrinkled skin and fat pads in patients with ALG8-CDG: revisiting skin manifestations in congenital disorders of glycosylation. Pediatr Dermatol 31:e1–e5CrossRefPubMedGoogle Scholar
  40. Krasnewich D (2014) Human glycosylation disorders. Cancer Biomark 14:3–16CrossRefPubMedGoogle Scholar
  41. Lam C, Ferreira C, Krasnewich D et al (2016) Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet Med. doi: 10.1038/gm.2016.75 (Epub ahead of print)
  42. Lee JK, Kim H, Park YM, Kim DH, Lim HT (2017) Mutations in DZIP1 and XYLT1 are associated with nonsyndromic early onset high myopia in the Korean population. Ophthalmic Genet. doi: 10.1080/13816810.2016.1232415 Google Scholar
  43. Liang W-C, Zhu W, Mitsuhashi S et al (2015) Congenital muscular dystrophy with fatty liver and infantile-onset cataract caused by TRAPPC11 mutations: broadening of the phenotype. Skelet Muscle 5:29. doi: 10.1186/s13395-015-0056-4 n CrossRefPubMedPubMedCentralGoogle Scholar
  44. Losfeld ME, Ng BG, Kircher M et al (2014) A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum Mol Genet 23:1602–1605CrossRefPubMedGoogle Scholar
  45. Lundin KE, Hamasy A, Backe PH et al (2015) Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene. Clin Immunol 161:366–372CrossRefPubMedPubMedCentralGoogle Scholar
  46. Makrythanasis P, Kato M, Zaki MS et al (2016) Pathogenic variants in PIGG cause intellectual disability with seizures and hypotonia. Am J Hum Genet 98:615–626CrossRefPubMedPubMedCentralGoogle Scholar
  47. Manya H, Yamaguchi Y, Kanagawa M et al (2016) The muscular dystrophy gene TMEM5 encodes a ribitol β1-4 xylosyltransferase required for the functional glycosylation of dystroglycan. J Biol Chem 291:24618–24627CrossRefPubMedPubMedCentralGoogle Scholar
  48. Matalonga L, Bravo M, Serra-Peinado C et al (2017) Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation. Hum Mut 38:148–151CrossRefPubMedGoogle Scholar
  49. McInerney-Leo AM, Harris JE, Gattas M et al (2016) Fryns syndrome associated with recessive mutations in PIGN in two separate families. Hum Mutat 37:695–702CrossRefPubMedGoogle Scholar
  50. Mohamed M, Cantagrel V, Al-Gazali L, Wevers RA, Lefeber DJ, Morava E (2011) Normal glycosylation screening does not rule out SRD5A3-CDG. Eur J Hum Genet 19:1019. doi: 10.1038/ejhg.2010.260 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Monticelli M, Ferro T, Jaeken J, Dos Reis FV, Videira PA (2016) Immunological aspects of congenital disorders of glycosylation (CDG): a review. J Inherit Metab Dis 39:765–780CrossRefPubMedGoogle Scholar
  52. Morava E (2014) Galactose supplementation in phosphoglucomutase-1 deficiency: review and outlook for a novel treatable CDG. Mol Genet Metab 112:275–279CrossRefPubMedPubMedCentralGoogle Scholar
  53. Morava E, Tiemes V, Thiel C et al (2016) ALG6-CDG: a recognizable phenotype with epilepsy, proximal muscle weakness, ataxia and behavioural and limb anomalies. J Inher Metab Dis 39:759CrossRefPubMedGoogle Scholar
  54. de la Morena-Barrio ME, Martínez-Martínez I, De Cos C et al (2016) Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect. J Thromb Haemost 14:1549–1560CrossRefPubMedGoogle Scholar
  55. Ng BG, Buckingham KJ, Raymond K et al (2013) Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet 92:632–636CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ng BG, Raymond K, Kircher M et al (2015a) Expanding the molecular and clinical phenotype of SSR4-CDG. Hum Mut 36:1048–1051CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ng BG, Wolfe LA, Ichikawa M et al (2015b) Biallelic mutations in CAD impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. Hum Mol Genet 24:3050–3057CrossRefPubMedPubMedCentralGoogle Scholar
  58. Park EJ, Grabinska KA, Guan Z et al (2014) Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab 20:448–457CrossRefPubMedPubMedCentralGoogle Scholar
  59. Park JH, Hogrebe M, Grüneberg M et al (2015) SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet 97:894–903CrossRefPubMedPubMedCentralGoogle Scholar
  60. Porath B, Gainullin VG, Cornec-Le Gall et al (2016) Mutations in GANAB, encoding the glucosidase IIa subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193-1207Google Scholar
  61. Praissman JL, Willer T, Sheikh MO et al (2016) The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition. elife 5:e14473. doi: 10.7554/eLife.14473 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Riemersma M, Froese DS, van Tol W et al (2015) Human ISPD is a cytidyltransferase required for dystroglycan O-mannosylation. Chem Biol 22:1643–1652Google Scholar
  63. Rymen D, Jaeken J (2014) Skin manifestations in CDG. J Inherit Metab Dis 37:699–708CrossRefPubMedGoogle Scholar
  64. Sabry S, Vuillaumier-Barrot S, Mintet E et al (2016) A case of fatal type I congenital disorder of glycosylation (CDG-I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J Rare Dis 11:84CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sassi A, Lazaroski S, Wu G et al (2014) Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 133:1410–1419CrossRefPubMedPubMedCentralGoogle Scholar
  66. Scott K, Gadomski T, Kozicz T, Morava E (2014) Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis 37:609–617CrossRefPubMedPubMedCentralGoogle Scholar
  67. Servián-Morilla ES, Takeuchi H, Lee TV et al (2016) A POGLUT1 mutation causes a muscular dystrophy with reduced notch signalling and satellite cell loss. EMBO Mol Med 8:1289–1309CrossRefPubMedPubMedCentralGoogle Scholar
  68. Silveira C, Leal GF, Cavalcanti DP (2016) Desbuquois dysplasia type II in a patient with a homozygous mutation in XYLT1 and new unusual findings. Am J Med Genet Part A 170A:3043–3047CrossRefGoogle Scholar
  69. Smith-Packard B, Myers SM, Williams MS et al (2015) Girls with seizures due to the c.320A>G variant in ALG13 do not show abnormal glycosylation pattern on standard testing. JIMD Rep 22:95–98CrossRefPubMedPubMedCentralGoogle Scholar
  70. Stray-Pedersen A, Backe PH, Sorte HS et al (2014) PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 95:1–12CrossRefGoogle Scholar
  71. Tarailo-Graovac M, Sinclair G, Stöckler-Ipsiroglu S et al (2015) The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis 10:23CrossRefPubMedPubMedCentralGoogle Scholar
  72. Taylan F, Costantini A, Coles N et al (2016) Spondyloocular syndrome: novel mutations in XYLT2 and expansion of the phenotypic spectrum. J Bone Miner Res 31:1577–1585CrossRefPubMedGoogle Scholar
  73. Tham E, Eklund EA, Hammarsjö A et al (2015) A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasqia due to pathogenic variants in ALG9. Eur J Hum Genet 24:198–207CrossRefPubMedPubMedCentralGoogle Scholar
  74. Van Damme T, Gardeitchik T, Mohamed M et al (2016) Mutations in ATP6V1E1 or ATP6V1A cause autosomal-recessive cutis laxa. Am J Hum Genet. doi: 10.1016/j.ajhg.2016.12.010 Google Scholar
  75. Van Scherpenzeel M, Willems E, Lefeber DJ (2016) Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glycoconj J 33:345–358CrossRefPubMedPubMedCentralGoogle Scholar
  76. Varki A, Cummings RD, Aebi M et al (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vogt G, Vogt B, Chuzhanova N, Julenius K, Cooper DN, Casanova JL (2007) Gain-of-glycosylation mutations. Curr Opin Genet Dev 17:245–251CrossRefPubMedGoogle Scholar
  78. Wada Y (2016) Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation. Glycoconj J 33:297–307CrossRefPubMedGoogle Scholar
  79. Willems AP, van Engelen BGM, Lefeber DJ (2016) Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta 1860:1640–1654CrossRefPubMedGoogle Scholar
  80. Zhang Y, Yu X, Ichikawa M et al (2014) Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol 133:1400–1409CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhang W, James PM, Ng BG et al (2016) A novel N-tetrasaccharide in patients with congenital disorders of glycosylation, including asparagine-linked glycosylation protein 1, phosphomannomutase 2, and mannose phosphate isomerase deficiencies. Clin Chem 62:208–217CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM 2017

Authors and Affiliations

  1. 1.Center for Metabolic DiseasesUniversity Hospital Gasthuisberg, KU LeuvenLeuvenBelgium
  2. 2.Department of Human GeneticsUniversity Hospital Gasthuisberg, KU LeuvenLeuvenBelgium

Personalised recommendations