Skip to main content
Log in

On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism

  • Letter
  • Published:
Journal of Inherited Metabolic Disease

Abstract

3-methylglutaconic acid (3MGA)-uria occurs in numerous inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism. This organic acid arises from thioester cleavage of 3-methylglutaconyl CoA (3MG CoA), an intermediate in leucine catabolism. In individuals harboring mutations in 3MG CoA hydratase (i.e., primary 3MGA-uria), dietary leucine is the source of 3MGA. In secondary 3MGA-uria, however, no leucine metabolism defects have been reported. While others have suggested 3MGA arises from aberrant isoprenoid shunting from cytosol to mitochondria, an alternative route posits that 3MG CoA arises in three steps from mitochondrial acetyl CoA. Support for this biosynthetic route in IEMs is seen by its regulated occurrence in microorganisms. The fungus, Ustilago maydis, the myxobacterium, Myxococcus xanthus and the marine cyanobacterium, Lyngbya majuscule, generate 3MG CoA (or acyl carrier protein derivative) in the biosynthesis of iron chelating siderophores, iso-odd chain fatty acids and polyketide/nonribosomal peptide products, respectively. The existence of this biosynthetic machinery in these organisms supports a model wherein, under conditions of mitochondrial dysfunction, accumulation of acetyl CoA in the inner mitochondrial space as a result of inefficient fuel utilization drives de novo synthesis of 3MG CoA. Since humans lack the downstream biosynthetic capability of the organisms mentioned above, as 3MG CoA levels rise, thioester hydrolysis yields 3MGA, which is excreted in urine as unspent fuel. Understanding the metabolic origins of 3MGA may increase its utility as a biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Blokhin AV, Yoo HD, Geralds RS, Nagle DG, Gerwick WH, Hamel E (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogues. Mol Pharmacol 48:523–531

    CAS  PubMed  Google Scholar 

  • Bode HB, Ring MW, Schwär G, Kroppenstedt RM, Kaiser D, Müller R (2006) 3-Hydroxy-3-methylglutaryl-coenzyme a (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J Bacteriol 188:6524–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bode HB, Ring MW, Schwär G et al (2009) Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. ChemBioChem 10:128–140

    Article  CAS  PubMed  Google Scholar 

  • Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445

    Article  CAS  PubMed  Google Scholar 

  • Calderone CT, Kowtoniuk WE, Kelleher NL, Walsh CT, Dorrestein PC (2006) Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc Natl Acad Sci U S A 103:8977–8982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Z, Sitachitta N, Rossi JV et al (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367

    Article  CAS  PubMed  Google Scholar 

  • Davidson M, McKenney J, Stein E et al (1997) Comparison of one-year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Am J Cardiol 79:1475–1481

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Bode HB, Mahmud T, Müller R, Schulz S (2005a) A novel type of geosmin biosynthesis in myxobacteria. J Org Chem 70:5174–5182

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Bode HB, Kroppenstedt RM, Müller R, Schulz S (2005b) Biosynthesis of iso-fatty acids in myxobacteria. Org Biomol Chem 3:2824–2831

    Article  CAS  Google Scholar 

  • Edmond J, Popjak G (1974) Transfer of carbon atoms from mevalonate to n-fatty acids. J Biol Chem 249:66–71

    CAS  PubMed  Google Scholar 

  • Edwards DJ, Marquez BL, Nogle LM et al (2004) Structure and biosynthesis of the Jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:419–430

    Article  CAS  PubMed  Google Scholar 

  • Frank B, Wenzel SC, Bode HB, Scharfe M, Blöcker H, Müller R (2007) From genetic diversity to metabolic unity: studies on the biosynthesis of aurafurones and aurafuron-like structures in myxobacteria and streptomycetes. J Mol Biol 374:24–38

    Article  CAS  PubMed  Google Scholar 

  • Geders TW, Gu L, Mowers JC et al (2007) Crystal structure of the ECH2 catalytic domain of CurF from Lyngbya majuscula. Insights into a decarboxylase involved in polyketide chain beta-branching. J Biol Chem 282:35954–35963

    Article  CAS  PubMed  Google Scholar 

  • Grindberg RV, Ishoey T, Brinza D et al (2011) Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS One 6, e18565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Jia J, Liu H, Håkansson K, Gerwick WH, Sherman DH (2006) Metabolic coupling of dehydration and decarboxylation in the curacin a pathway: functional identification of a mechanistically diverse enzyme pair. J Am Chem Soc 128:9014–9015

    Article  CAS  PubMed  Google Scholar 

  • Kelley R, Cheatham J, Clark B et al (1991) X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3- methylglutaconic aciduria. J Pediatr 119:738–747

    Article  CAS  PubMed  Google Scholar 

  • Kirkby B, Roman N, Kobe B, Kellie S, Forwood JK (2010) Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog Lipid Res 49:366–377

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luxenburger E, Müller R (2013) An alternative isovaleryl CoA biosynthetic pathway involving a previously unknown 3-methylglutaconyl CoA decarboxylase. Angew Chem Int Ed Engl 52:1304–1308

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Samuel BS, Breen PC, Ruvkun G (2014) Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 7496:406–410

    Article  Google Scholar 

  • Mack M, Schniegler-Mattox U, Peters V, Hoffmann GF, Liesert M, Buckel W, Zschocke J (2006) Biochemical characterization of human 3-methylglutaconyl-CoA hydratase and its role in leucine metabolism. FEBS J 273:2012–2022

    Article  CAS  PubMed  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei W, Kratz LE, Bernardini I et al (2010) A model of Costeff syndrome reveals metabolic and protective functions of mitochondrial OPA3. Development 137:2587–2596

  • Phillips PS, Haas RH, Bannykh S et al (2002) Statin-associated myopathy with normal creatine kinase levels. Ann Int Med 137:581–585

    Article  PubMed  Google Scholar 

  • Roullet JB, Kerkens LS, Pappu AS et al (2012) No evidence for mevalonate shunting in moderately affected children with Smith-Lemli-Opitz syndrome. J Inherit Metab Dis 35:859–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silakowski B, Schairer HU, Ehret H et al (1999) New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274:37391–37399

    Article  CAS  PubMed  Google Scholar 

  • Simunovic V, Müller R (2007) Mutational analysis of the myxovirescin biosynthetic gene cluster reveals novel insights into the functional elaboration of polyketide backbones. ChemBioChem 8:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Su B, Ryan RO (2014) Metabolic biology of 3-methylglutaconic acid-uria: a new perspective. J Inherit Metab Dis 37:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Helm D, Winkelmann G (1994) Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR (eds) Metal Ions in Fungi. Marcel Dekker, New York, p 39–98

  • Winterberg B, Uhlmann S, Linne U et al (2010) Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol 75:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Wortmann SB, Kluijtmans LA, Rodenburg RJ et al (2013) Methylglutaconic aciduria—lessons from 50 genes and 977 patients. J Inherit Metab Dis 36:913–921

  • Wortmann SB, Kluijtmans LA, Sequeira S, Wevers RA, Morava E (2014) Leucine loading test is only discriminative for 3-methylglutaconic aciduria due to AUH defect. JIMD Rep 16:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon YJ, Kim ES, Hwang YS, Choi CY (2004) Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl Micro Biotech 63:626–634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the US National Institutes of Health (R37 HL64159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Ryan.

Ethics declarations

Conflict of interest

None.

Informed consent

No human subjects were used in this study.

Animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Communicated by: Eva Morava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikon, N., Ryan, R.O. On the origin of 3-methylglutaconic acid in disorders of mitochondrial energy metabolism. J Inherit Metab Dis 39, 749–756 (2016). https://doi.org/10.1007/s10545-016-9933-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-016-9933-1

Keywords

Navigation