Skip to main content

Advertisement

Log in

Inborn errors of cytoplasmic triglyceride metabolism

  • Complex Lipids
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and “Jordan’s anomaly” of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan’s anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATGL:

Adipose triglyceride lipase

BAT:

Brown adipose tissue

CTGM:

Cytoplasmic TG metabolism

DG:

Diglycerides

ER:

Endoplasmic reticulum

FA:

Fatty acid

G3P:

Glycerol-3-phosphate

HSL:

Hormone-sensitive lipase

LD:

Lipid droplet

LPA:

Lysophosphatidic acid

MG:

Monoglycerides

MGL:

Monoglyceride lipase

NLSD:

Neutral lipid storage disease

NLSDI:

NLSD with ichthyosis

NLSDM:

NLSD with myopathy

PA:

Phosphatidic acid

PLIN1:

Perilipin 1

TG:

Triglycerides

WAT:

White adipose tissue.

References

  • Albert JS, Yerges-Armstrong LM, Horenstein RB et al (2014) Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 370(24):2307–2315

    Article  PubMed Central  PubMed  Google Scholar 

  • Basel-Vanagaite L, Zevit N, Har Zahav A et al (2012) Transient infantile hypertriglyceridemia, fatty liver, and hepatic fibrosis caused by mutated GPD1, encoding glycerol-3-phosphate dehydrogenase 1. Am J Hum Genet 90(1):49–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bergounioux J, Brassier A, Rambaud C et al (2012) Fatal rhabdomyolysis in 2 children with LPIN1 mutations. J Pediatr 160(6):1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Bility MT, Thompson JT, McKee RH et al (2004) Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicol Sci 82(1):170–182

    Article  CAS  PubMed  Google Scholar 

  • Brown LJ, Koza RA, Marshall L, Kozak LP, MacDonald MJ (2002) Lethal hypoglycemic ketosis and glyceroluria in mice lacking both the mitochondrial and the cytosolic glycerol phosphate dehydrogenases. J Biol Chem 277(36):32899–32904

    Article  CAS  PubMed  Google Scholar 

  • Bruno C, Bertini E, Di Rocco M et al (2008) Clinical and genetic characterization of chanarin-dorfman syndrome. Biochem Biophys Res Commun 369(4):1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Cakmak E, Alagozlu H, Yonem O, Ataseven H, Citli S, Ozer H (2012) Steatohepatitis and liver cirrhosis in Chanarin-Dorfman syndrome with a new ABDH5 mutation. Clin Res Hepatol Gastroenterol 36(2):e34–e37

    Article  CAS  PubMed  Google Scholar 

  • Cases S, Smith SJ, Zheng YW et al (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 95(22):13018–13023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung S, Wang SP, Pan L, Mitchell G, Trasler J, Hermo L (2001) Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 142(10):4272–4281

    Article  CAS  PubMed  Google Scholar 

  • Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46(11):2347–2355

    Article  CAS  PubMed  Google Scholar 

  • Dalen KT, Schoonjans K, Ulven SM et al (2004) Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes 53(5):1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Dwyer JR, Donkor J, Zhang P et al (2012) Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proc Natl Acad Sci U S A 109(37):E2486–E2495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ebihara K, Kusakabe T, Hirata M et al (2007) Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab 92(2):532–541

    Article  CAS  PubMed  Google Scholar 

  • Eichmann TO, Kumari M, Haas JT et al (2012) Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 287(49):41446–41457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferguson PJ, Chen S, Tayeh MK et al (2005) Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet 42(7):551–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer J, Lefevre C, Morava E et al (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39(1):28–30

    Article  CAS  PubMed  Google Scholar 

  • Forest C, Tordjman J, Glorian M et al (2003) Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. Biochem Soc Trans 31(Pt 6):1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Fortier M, Wang SP, Mauriege P et al (2004) Hormone-sensitive lipase-independent adipocyte lipolysis during beta-adrenergic stimulation, fasting, and dietary fat loading. Am J Physiol Endocrinol Metab 287(2):E282–E288

    Article  CAS  PubMed  Google Scholar 

  • Francke U, Harper JF, Darras BT et al (1987) Congenital adrenal hypoplasia, myopathy, and glycerol kinase deficiency: molecular genetic evidence for deletions. Am J Hum Genet 40(3):212–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandotra S, Le Dour C, Bottomley W et al (2011) Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364(8):740–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garg A, Peshock RM, Fleckenstein JL (1999) Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab 84(1):170–174

    CAS  PubMed  Google Scholar 

  • Haas JT, Winter HS, Lim E et al (2012) DGAT1 mutation is linked to a congenital diarrheal disorder. J Clin Invest 122(12):4680–4684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haemmerle G, Lass A, Zimmermann R et al (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312(5774):734–737

    Article  CAS  PubMed  Google Scholar 

  • Haemmerle G, Moustafa T, Woelkart G et al (2011) ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med 17(9):1076–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hajra AK (1997) Dihydroxyacetone phosphate acyltransferase. Biochim Biophys Acta 1348(1–2):27–34

    Article  CAS  PubMed  Google Scholar 

  • Harris CA, Haas JT, Streeper RS et al (2011) DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res 52(4):657–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinzer AK, Watkins PA, Lu JF et al (2003) A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum Mol Genet 12(10):1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Hetenyi G Jr (1985) Gluconeogenesis in vivo. Am J Physiol 249(6):792–793

    Google Scholar 

  • Hirano K, Ikeda Y, Zaima N, Sakata Y, Matsumiya G (2008) Triglyceride deposit cardiomyovasculopathy. N Engl J Med 359(22):2396–2398

    Article  CAS  PubMed  Google Scholar 

  • Huq AH, Lovell RS, Ou CN, Beaudet AL, Craigen WJ (1997) X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism, autonomous glucocorticoid secretion and neonatal death. Hum Mol Genet 6(11):1803–1809

    Article  CAS  PubMed  Google Scholar 

  • Igal RA, Rhoads JM, Coleman RA (1997) Neutral lipid storage disease with fatty liver and cholestasis. J Pediatr Gastroenterol Nutr 25(5):541–547

    Article  CAS  PubMed  Google Scholar 

  • Israeli S, Pessach Y, Sarig O, Goldberg I, Sprecher E (2012) Beneficial effect of acitretin in Chanarin-Dorfman syndrome. Clin Exp Dermatol 37(1):31–33

    Article  CAS  PubMed  Google Scholar 

  • Janssen MC, van Engelen B, Kapusta L et al (2013) Symptomatic lipid storage in carriers for the PNPLA2 gene. Eur J Hum Genet 21(8):807–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jordans GH (1953) The familial occurrence of fat containing vacuoles in the leukocytes diagnosed in two brothers suffering from dystrophia musculorum progressiva (ERB.). Acta Med Scand 145(6):419–423

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Eagan J, Desai NK, et al (2014) A compound heterozygous mutation in GPD1 causes hepatomegaly, steatohepatitis, and hypertriglyceridemia. Eur J Hum Genet

  • Kim HE, Bae E, Jeong DY et al (2013) Lipin1 regulates PPARgamma transcriptional activity. Biochem J 453(1):49–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koschinsky T, Gries FA, Herberg L (1971) Regulation of glycerol kinase by insulin in isolated fat cells and liver of Bar Harbor obese mice. Diabetologia 7(5):316–322

    Article  CAS  PubMed  Google Scholar 

  • Laforet P, Vianey-Saban C (2010) Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord 20(11):693–700

    Article  PubMed  Google Scholar 

  • Laforet P, Stojkovic T, Bassez G et al (2013) Neutral lipid storage disease with myopathy: a whole-body nuclear MRI and metabolic study. Mol Genet Metab 108(2):125–131

    Article  CAS  PubMed  Google Scholar 

  • Lefevre C, Jobard F, Caux F et al (2001) Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet 69(5):1002–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Brochu M, Wang SP et al (2002) Hormone-sensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143(9):3333–3340

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Chiba S, Suzuki A et al (2013) Vascular smooth muscle cells isolated from adipose triglyceride lipase-deficient mice exhibit distinct phenotype and phenotypic plasticity. Biochem Biophys Res Commun 434(3):534–540

    Article  CAS  PubMed  Google Scholar 

  • Longo I, Frints SG, Fryns JP et al (2003) A third MRX family (MRX68) is the result of mutation in the long chain fatty acid-CoA ligase 4 (FACL4) gene: proposal of a rapid enzymatic assay for screening mentally retarded patients. J Med Genet 40(1):11–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magre J, Delepine M, Khallouf E et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28(4):365–370

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Botas J, Anderson JB, Tessier D et al (2000) Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet 26(4):474–479

    Article  CAS  PubMed  Google Scholar 

  • McCabe ERB (2001) Disorders of glycerol metabolism. The metabolic and molecular bases of inherited disease. McGraw Hill, New York, pp 2217–2238

  • Meloni I, Muscettola M, Raynaud M et al (2002) FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nat Genet 30(4):436–440

    Article  CAS  PubMed  Google Scholar 

  • Michot C, Hubert L, Brivet M et al (2010) LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum Mutat 31(7):E1564–E1573

    Article  CAS  PubMed  Google Scholar 

  • Michot C, Hubert L, Romero NB et al (2012) Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia. J Inherit Metab Dis 35(6):1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Michot C, Mamoune A, Vamecq J et al (2013) Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochim Biophys Acta 1832(12):2103–2114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millward CA, Desantis D, Hsieh CW et al (2010) Phosphoenolpyruvate carboxykinase (Pck1) helps regulate the triglyceride/fatty acid cycle and development of insulin resistance in mice. J Lipid Res 51(6):1452–1463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra S, Samanta M, Sarkar M, Chatterjee S (2010) Dorfman-Chanarin syndrome: a rare neutral lipid storage disease. Indian J Pathol Microbiol 53(4):799–801

    Article  PubMed  Google Scholar 

  • Natali A, Gastaldelli A, Camastra S et al (2013) Metabolic consequences of adipose triglyceride lipase deficiency in humans: an in vivo study in patients with neutral lipid storage disease with myopathy. J Clin Endocrinol Metab 98(9):E1540–E1548

    Article  CAS  PubMed  Google Scholar 

  • Nye CK, Hanson RW, Kalhan SC (2008) Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J Biol Chem 283(41):27565–27574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohkuma A, Nonaka I, Malicdan MC et al (2008) Distal lipid storage myopathy due to PNPLA2 mutation. Neuromuscul Disord 18(8):671–674

    Article  PubMed  Google Scholar 

  • Okumura T (2011) Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 67(4):629–636

    Article  CAS  PubMed  Google Scholar 

  • Oral EA, Simha V, Ruiz E et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346(8):570–578

    Article  CAS  PubMed  Google Scholar 

  • Perrin L, Feasson L, Furby A et al (2013) PNPLA2 mutation: a paediatric case with early onset but indolent course. Neuromuscul Disord 23(12):986–991

    Article  PubMed  Google Scholar 

  • Peterfy M, Phan J, Xu P, Reue K (2001) Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27(1):121–124

    Article  CAS  PubMed  Google Scholar 

  • Piva E, Pajola R, Binotto G, Plebani M (2009) Jordans’ anomaly in a new neutral lipid storage disease. Am J Hematol 84(4):254–255

    Article  PubMed  Google Scholar 

  • Prochazka M, Kozak UC, Kozak LP (1989) A glycerol-3-phosphate dehydrogenase null mutant in BALB/cHeA mice. J Biol Chem 264(8):4679–4683

    CAS  PubMed  Google Scholar 

  • Pujol RM, Gilaberte M, Toll A et al (2005) Erythrokeratoderma variabilis-like ichthyosis in Chanarin-Dorfman syndrome. Br J Dermatol 153(4):838–841

    Article  CAS  PubMed  Google Scholar 

  • Radner FP, Streith IE, Schoiswohl G et al (2010) Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem 285(10):7300–7311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reilich P, Horvath R, Krause S et al (2011) The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene. J Neurol 258(11):1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Rizzo WB, Jenkens SM, Boucher P (2012) Recognition and diagnosis of neuro-ichthyotic syndromes. Semin Neurol 32(1):75–84

    Article  PubMed  Google Scholar 

  • Ryall RL, Goldrick RB (1977) Glycerokinase in human adipose tissue. Lipids 12(3):272–277

    Article  CAS  PubMed  Google Scholar 

  • Schuler AM, Gower BA, Matern D, Rinaldo P, Vockley J, Wood PA (2005) Synergistic heterozygosity in mice with inherited enzyme deficiencies of mitochondrial fatty acid beta-oxidation. Mol Genet Metab 85(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C (1995) Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J Biol Chem 270(28):16970–16973

    Article  CAS  PubMed  Google Scholar 

  • Simha V, Garg A (2003) Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab 88(11):5433–5437

    Article  CAS  PubMed  Google Scholar 

  • Smith SJ, Cases S, Jensen DR et al (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 25(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Srinivasaraghavan R, Krishnamurthy S, Chandar R, et al (2014) Acitretin-responsive ichthyosis in Chanarin-Dorfman syndrome with a novel mutation in the ABHD5/CGI-58 gene. Pediatr Dermatol doi: 10.1111/pde.12170.

  • Stone SJ, Myers HM, Watkins SM et al (2004) Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 279(12):11767–11776

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296(6):E1195–E1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tansey JT, Sztalryd C, Gruia-Gray J et al (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 98(11):6494–6499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas G, Betters JL, Lord CC et al (2013) The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Rep 5(2):508–520

    Article  CAS  PubMed  Google Scholar 

  • Tornqvist H, Belfrage P (1976) Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251(3):813–819

    CAS  PubMed  Google Scholar 

  • Turchetto-Zolet AC, Maraschin FS, de Morais GL et al (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol 11:263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van de Weijer T, Havekes B, Bilet L et al (2013) Effects of bezafibrate treatment in a patient and a carrier with mutations in the PNPLA2 gene, causing neutral lipid storage disease with myopathy. Circ Res 112(5):e51–e54

    Article  PubMed  Google Scholar 

  • Van Maldergem L (2012) Berardinelli-Seip Congenital Lipodystrophy. GeneReviews. University of Washington, Seattle

    Google Scholar 

  • Vigouroux C, Caron-Debarle M, Le Dour C, Magre J, Capeau J (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43(6):862–876

    Article  CAS  PubMed  Google Scholar 

  • Wapnir RA, Stiel L (1985) Regulation of gluconeogenesis by glycerol and its phosphorylated derivatives. Biochem Med 33(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Watkins PA, Maiguel D, Jia Z, Pevsner J (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48(12):2736–2750

    Article  CAS  PubMed  Google Scholar 

  • Wolins NE, Quaynor BK, Skinner JR et al (2006) OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55(12):3418–3428

    Article  CAS  PubMed  Google Scholar 

  • Wu JW, Wang SP, Alvarez F et al (2011) Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54(1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Wu JW, Wang SP, Casavant S, Moreau A, Yang GS, Mitchell GA (2012) Fasting energy homeostasis in mice with adipose deficiency of desnutrin/adipose triglyceride lipase. Endocrinology 153(5):2198–2207

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Huang BL, Jialal I, Northrup H, McCabe ER, Dipple KM (2006) Asymptomatic isolated human glycerol kinase deficiency associated with splice-site mutations and nonsense-mediated decay of mutant RNA. Pediatr Res 59(4 Pt 1):590–592

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Verity MA, Reue K (2014) Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. Cell Metab 20(2):267–279

    Article  PubMed  Google Scholar 

  • Zimmermann R, Haemmerle G, Wagner EM, Strauss JG, Kratky D, Zechner R (2003) Decreased fatty acid esterification compensates for the reduced lipolytic activity in hormone-sensitive lipase-deficient white adipose tissue. J Lipid Res 44(11):2089–2099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Canadian Institutes for Health Research Grants 221920 and 178978 to GM.

Compliance with ethics guidelines

Conflict of interest

None.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant A. Mitchell.

Additional information

Communicated by: Matthias Baumgartner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J.W., Yang, H., Wang, S.P. et al. Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 38, 85–98 (2015). https://doi.org/10.1007/s10545-014-9767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9767-7

Keywords

Navigation