Skip to main content
Log in

A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with mut 0 methylmalonic acidemia

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

End stage kidney disease is a well-known complication of methylmalonic acidemia (MMA), and can be treated by dialysis, kidney transplant, or combined kidney-liver transplant. While liver and/or kidney transplantation in MMA may reduce the risk of metabolic crisis and end-organ disease, it does not fully prevent disease-related complications. We performed detailed metabolite and kinetic analyses in a 28-year-old patient with mut 0 MMA who underwent hemodialysis for 6 months prior to receiving a combined liver/kidney transplant. A single hemodialysis session led to a 54 % reduction in plasma methylmalonic acid and yielded a plasma clearance of 103 ml/min and VD0.48 L/kg, which approximates the total body free water space. This was followed by rapid reaccumulation of methylmalonic acid over 24 h to the predialysis concentration in the plasma. Following combined liver/kidney transplantation, the plasma methylmalonic acid was reduced to 3 % of pre-dialysis levels (6,965 ± 1,638 (SD) μmol/L and 234 ± 100 (SD) μmol/L) but remained >850× higher than the upper limit of normal (0.27 ± 0.08 (SD) μmol/L). Despite substantial post-operative metabolic improvement, the patient developed significant neurologic complications including acute worsening of vision in the setting of pre-existing bilateral optic neuropathy, generalized seizures, and a transient, focal leukoencephalopathy. Plasma methylmalonic acid was stable throughout the post-operative course. The biochemical parameters exhibited by this patient further define the whole body metabolism of methylmalonic acid in the setting of dialysis and subsequent combined liver/kidney transplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjalla CE, Hosack AR, Gilfix B et al (1998) Seven novel mutations in mut methylmalonic aciduria. Hum Mutat 11:270–274

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner ER, Viardot C (1995) Long-term follow-up of 77 patients with isolated methylmalonic acidemia. J Inherit Metab Dis 18:138–142

    Article  Google Scholar 

  • Brassier A, Boyer O, Valayannopoulos V et al (2013) Renal transplantation in 4 patients with methylmalonic aciduria: a cell therapy for metabolic disease. Mol Genet Metab 110:106–110

    Article  PubMed  CAS  Google Scholar 

  • Burdelski M, Ullrich K (1999) Liver transplantation in metabolic disorders: summary of the general discussion. Eur J Pediatr 158s2:S95–S96

    Article  Google Scholar 

  • Chakrapani A, Sivakumar P, McKiernan PJ, Leonard JV (2002) Metabolic stroke in methylmalonic acidemia 5 years after liver transplantation. J Pediatr 140:261–263

    Article  PubMed  Google Scholar 

  • Chen PW, Hwu WL, Ho MC et al (2010) Stabilization of blood methylmalonic acid level in methylmalonic acidemia after liver transplantation. Pediatr Transplant 14:337–341

    Article  PubMed  Google Scholar 

  • Clothier JC, Chakrapani A, Preece MA et al (2011) Renal transplantation in a boy with methylmalonic acidaemia. J Inherit Metab Dis 34:695–700

    Article  PubMed  Google Scholar 

  • de Ogier HB, Benoist JF, Rigal O, Touati G, Rabier D, Saudubray JM (2005) Methylmalonic and propionic acidemias: management and outcome. J Inherit Metab Dis 28:415–423

    Article  Google Scholar 

  • Enns GM, Kinsman SL, Perlman SL et al (2012) Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 105:91–102

    Article  PubMed  CAS  Google Scholar 

  • Etuwewe B, Jones CA, Mathur S, Wright KP, Morris AA (2009) Peritoneal dialysis for chronic renal failure in a patient with methylmalonic acidaemia. Pediatr Nephrol 24:1085–1087

    Article  PubMed  Google Scholar 

  • Guyton AC (1976) Textbook of medical physiology, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Ho D, Harrison V, Street N (2000) Anaesthesia for liver transplantation in a patient with methylmalonic acidaemia. Paediatr Anaesth 10:215–218

    Article  PubMed  CAS  Google Scholar 

  • Hörster F, Baumgartner MR, Viardot C et al (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res 62:225–230

    Article  PubMed  Google Scholar 

  • Hsui JY, Chien YH, Chu SY (2003) Living-related liver transplantation for methylmalonic acidemia: report of one case. Acta Paediatr Taiwan 44:171–173

    PubMed  Google Scholar 

  • Inker LA, Schmid CH, Tighiouart H et al (2012) CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  PubMed  CAS  Google Scholar 

  • Kamei K, Ito S, Shigeta T et al (2011) Preoperative dialysis for liver transplantation in methylmalonic acidemia. Ther Apher Dial 15:488–492

    Article  PubMed  Google Scholar 

  • Kaplan P, Ficicioglu C, Mazur AT, Palmieri MJ, Berry GT (2006) Liver transplantation is not curative for methylmalonic acidopathy caused by methylmalonyl-CoA mutase deficiency. Mol Gen Meta 88:322–326

    Article  CAS  Google Scholar 

  • Kruse T, Reiber H, Neuhoff V (1985) Amino acid transport across the human blood-CSF barrier an evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci 70:129–138

    Article  PubMed  CAS  Google Scholar 

  • Kruzka PS, Manoli I, Sloan JL, Kopp JB, Venditti CP (2013) Renal growth in isolated methylmalonic acidemia. Genet Med 15:990–996

    Article  Google Scholar 

  • Leonard JV, Walter JH, McKiernan PJ (2001) Workshop Report, The management of organic acidemias: the role of transplantation. J Inherit Metab Dis 24:309–311

    Article  PubMed  CAS  Google Scholar 

  • Lubrano R, Scoppi P, Barsotti P (2001) Kidney transplantation in a girl with methylmalonic acidemia and end stage renal failure. Pediatr Nephrol 16:848–851

    Article  PubMed  CAS  Google Scholar 

  • Lubrano R, Elli M, Rossi M et al (2007) Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at 10 years and review of the literature. Pediatr Nephrol 22:1209–1214

    Article  PubMed  Google Scholar 

  • Lubrano R, Bellelli E, Gentile I et al (2013a) Pregnancy in a methylmalonic acidemia patient with kidney transplantation: a case report. Am J Transplant 13:1918–1922

    Article  PubMed  CAS  Google Scholar 

  • Lubrano R, Perez B, Elli M (2013b) Methylmalonic acidemia and kidney transplantation. Pediatr Nephrol 10:2067–2068

    Article  Google Scholar 

  • Manoli I, Venditti CP (2010) MethylmalonicAcidemia. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (eds) GeneReviews™ [Internet]. University of Washington, Seattle

    Google Scholar 

  • Moreno-Vega A, Govantes JM (1985) Methylmalonic acidemia treated by continuous peritoneal dialysis. NEJM 312:1641–1642

    PubMed  CAS  Google Scholar 

  • Nagarajan S, Enns GM, Millan MT, Winter S, Sarwal MM (2005) Management of methylmalonic acidaemia by combined liver–kidney transplantation. J Inherit Metab Dis 28:517–524

    Article  PubMed  CAS  Google Scholar 

  • Nyhan WL, Ozand PT (1998) Atlas of metabolic diseases. Chapman and Hall, London, pp 13–23

    Google Scholar 

  • Nyhan WL, Gargus JJ, Boyle K, Selby R, Koch R (2002) Progressive neurologic disability in methylmalonic acidemia despite transplantation of the liver. Eur J Pediatr 161:377–379

    Article  PubMed  Google Scholar 

  • Oberholzer VG, Levin B, Burgess EA, Young WF (1967) Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child 42:492–504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paik KH, Lee JE, Jin DK (2004) Successful dialysis in a boy with methylmalonic acidemia. Pediatr Nephrol 19:1180–1181

    Article  PubMed  Google Scholar 

  • Prada CE, Al Jasmi F, Kirk EP et al (2011) Cardiac disease in methylmalonic acidemia. J Pediatr 159:862–864

    Article  PubMed  Google Scholar 

  • Rinaldo P, Cowan TM, Matern D (2008) Acylcarnitine profile analysis. Gen in Med 10:151–156

    Article  Google Scholar 

  • Sadun AA, Chicani CF, Ross-Cisneros FN et al (2012) Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol 69:331–338

    Article  PubMed  Google Scholar 

  • Stabler SP, Podell ER, Allen RH (1985) Quantitation of methylmalonic acid and other dicarboxylic acids in normal serum and urine using capillary gas chromatography–mass spectrometry. Anal Biochem 150:58–66

    Article  PubMed  Google Scholar 

  • Stabler SP, Allen RH, Barrett RE, Savage DG, Lindenbaum J (1991) Cerebrospinal fluid methylmalonic acid levels in normal subjects and patients with cobalamin deficiency. Neurol 41:1627–1632

    Article  CAS  Google Scholar 

  • Stokke O, Eldjarn L, Norum KR, Steen-Johnsen J, Halvorsen S (1967) Methylmalonic acidemia A new inborn error of metabolism which may cause fatal acidosis in the neonatal period. Scand J Clin Lab Invest 4:313–328

    Article  Google Scholar 

  • Traber G, Baumgartner MR, Schwarz U, Pangalu A, Donath MY, Landau K (2011) Subacute bilateral visual loss in methylmalonic acidemia. J Neuroophthalmol 31:344–346

    Article  PubMed  Google Scholar 

  • van der Crabben SN, Verhoeven-Duif NM, Brilstra EH et al (2013) An update on serine deficiency disorders. J Inherit Metab Dis 36:9592–9594

    Google Scholar 

  • van’t Hoff WG, Dixon M, Taylor J et al (1998) Combined liver–kidney transplantation in methylmalonic acidemia. J Pediatr 132:1043–1044

    Article  Google Scholar 

  • Van’t Hoff WG, McKiernan PJ, Surtees RA, Leonard JV (1999) Liver transplantation for methylmalonic acidaemia. Eur J Pediatr 158s2:S70–S74

    Article  Google Scholar 

  • Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ (1989) Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr 148:344–348

    Article  PubMed  CAS  Google Scholar 

  • Watson PE, Watson ID, Batt RD (1980) Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr 33:27–39

    PubMed  CAS  Google Scholar 

  • Wendel U, de Baulny HO (2006) Branched-chain organic acidurias/acidemias. In: Fernandes, Saudubray, van den Berghe, Walter (eds) Inborn metabolic diseases, vol 4. Springer, Heidelberg, pp 246–262

    Google Scholar 

  • Willard HF, Rosenberg LE (1980) Inherited methylmalonyl CoA mutase apoenzyme deficiency in human fibroblasts. Evidence for allelic heterogeneity, genetic compounds, and codominant expression. J Clin Invest 65:690–698

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Williams ZR, Hurley PE, Altiparmak UE et al (2009) Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol 147:929–933

    Article  PubMed  CAS  Google Scholar 

  • Worgan LC, Niles K, Tirone JC et al (2006) Spectrum of mutations in mut methylmalonic acidemia and identification of a common Hispanic mutation and haplotype. Hum Mutat 27:31–43

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary J. Vernon.

Additional information

Communicated by: Gerard T. Berry

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

Supplementary Table 1

CSF samples were taken on postoperative days operative days 28 (day of seizure onset) and 48 (day of seizure escalation), and from the CSF alone on day 55 (fever of unknown origin). All CSF samples had normal or negative protein, glucose, cell counts, and cultures (Supplementary Table 1) (GIF 237 kb)

(TIFF 29 kb)

Supplementary Table 2

Full Plasma and CSF amino acid profiles measured at post operative days (POD) 28, 48, 53 (CSF only), 55 (plasma only) and 57 (plasma only). All values are in uMol/L (GIF 268 kb)

(TIFF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernon, H.J., Sperati, C.J., King, J.D. et al. A detailed analysis of methylmalonic acid kinetics during hemodialysis and after combined liver/kidney transplantation in a patient with mut 0 methylmalonic acidemia. J Inherit Metab Dis 37, 899–907 (2014). https://doi.org/10.1007/s10545-014-9730-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9730-7

Keywords

Navigation