Skip to main content
Log in

Genistein increases glycosaminoglycan levels in mucopolysaccharidosis type I cell models

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by diminished degradation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate, which results in the accumulation of these GAGs and subsequent cellular dysfunction. Patients present with a variety of symptoms, including severe skeletal disease. Genistein has been shown previously to inhibit GAG synthesis in MPS fibroblasts, presumably through inhibition of tyrosine kinase activity of the epidermal growth factor receptor (EGFR). To determine the potentials of genistein for the treatment of skeletal disease, MPS I fibroblasts were induced into chondrocytes and osteoblasts and treated with genistein. Surprisingly, whereas tyrosine phosphorylation levels (as a measure for tyrosine kinase inhibition) were decreased in all treated cell lines, there was a 1.3 and 1.6 fold increase in GAG levels in MPS I chondrocytes and fibroblast, respectively (p < 0.05). Sulfate incorporation in treated MPS I fibroblasts was 2.6 fold increased (p < 0.05), indicating increased GAG synthesis despite tyrosine kinase inhibition. This suggests that GAG synthesis is not exclusively regulated through the tyrosine kinase activity of the EGFR. We hypothesize that the differences in outcomes between studies on the effect of genistein in MPS are caused by the different effects of genistein on different growth factor signaling pathways, which regulate GAG synthesis. More studies are needed to elucidate the precise signaling pathways which are affected by genistein and alter GAG metabolism in order to evaluate the therapeutic potential of genistein for MPS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiyama T, Ishida J, Nakagawa S et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595

    CAS  PubMed  Google Scholar 

  • Aldenhoven M, Boelens JJ, de Koning TJ (2008) The clinical outcome of Hurler syndrome after stem cell transplantation. Biol Blood Marrow Transplant 14:485–498

    Article  CAS  PubMed  Google Scholar 

  • Arfi A, Richard M, Gandolphe C, Scherman D (2010) Storage correction in cells of patients suffering from mucopolysaccharidoses types IIIA and VII after treatment with genistein and other isoflavones. J Inherit Metab Dis 33:61–67

    Article  CAS  PubMed  Google Scholar 

  • Baldo G, Mayer FQ, Martinelli BZ et al (2013) Enzyme replacement therapy started at birth improves outcome in difficult-to-treat organs in mucopolysaccharidosis I mice. Mol Genet Metab 109:33–40

    Article  CAS  PubMed  Google Scholar 

  • Blunk T, Sieminski AL, Gooch KJ et al (2002) Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng 8:73–84

    Article  CAS  PubMed  Google Scholar 

  • Blunk T, Sieminski AL, Appel B et al (2003) Bone morphogenetic protein 9: a potent modulator of cartilage development in vitro. Growth Factors 21:71–77

    Article  CAS  PubMed  Google Scholar 

  • Coldham NG, Sauer MJ (2000) Pharmacokinetics of [(14)C]Genistein in the rat: gender-related differences, potential mechanisms of biological action, and implications for human health. Toxicol Appl Pharmacol 164:206–215

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter J, Valstar MJ, Narajczyk M et al (2012) Genistein in Sanfilippo disease: a randomized controlled crossover trial. Ann Neurol 71:110–120

    Article  PubMed  Google Scholar 

  • Delgadillo V, O’Callaghan MM, Artuch R, Montero R, Pineda M (2011) Genistein supplementation in patients affected by Sanfilippo disease. J Inherit Metab Dis 34:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Dacremont G, Wanders RJ (2009) Toxicity of peroxisomal C27-bile acid intermediates. Mol Genet Metab 96:121–128

    Article  CAS  PubMed  Google Scholar 

  • Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE (2002) Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng 8:591–601

    Article  CAS  PubMed  Google Scholar 

  • Hiraki Y, Inoue H, Hirai R, Kato Y, Suzuki F (1988) Effect of transforming growth factor beta on cell proliferation and glycosaminoglycan synthesis by rabbit growth-plate chondrocytes in culture. Biochim Biophys Acta 969:91–99

    Article  CAS  PubMed  Google Scholar 

  • Hwang KA, Park MA, Kang NH et al (2013) Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 beta-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways. Toxicol Appl Pharmacol 272:637–646

    Article  CAS  PubMed  Google Scholar 

  • Jakobkiewicz-Banecka J, Piotrowska E, Narajczyk M, Baranska S, Wegrzyn G (2009) Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J Biomed Sci 16:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Junker JP, Sommar P, Skog M, Johnson H, Kratz G (2010) Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts. Cells Tissues Organs 191:105–118

    Article  PubMed  Google Scholar 

  • Kim H, Xu J, Su Y et al (2001) Actions of the soy phytoestrogen genistein in models of human chronic disease: potential involvement of transforming growth factor beta. Biochem Soc Trans 29:216–222

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Dodsworth C, Paras A, Burton BK (2013) High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Mol Genet Metab 109:382–385

    Article  CAS  PubMed  Google Scholar 

  • Kingma SD, Langereis EJ, De Klerk CM et al (2013) An algorithm to predict phenotypic severity in mucopolysaccharidosis type I in the first month of life. Orphanet J Rare Dis 8:99

    Article  PubMed Central  PubMed  Google Scholar 

  • Kloska A, Jakobkiewicz-Banecka J, Narajczyk M, Banecka-Majkutewicz Z, Wegrzyn G (2011) Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses. Metab Brain Dis 26:1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kloska A, Narajczyk M, Jakobkiewicz-Banecka J et al (2012) Synthetic genistein derivatives as modulators of glycosaminoglycan storage. J Transl Med 10:153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mackie EJ, Tatarczuch L, Mirams M (2011) The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 211:109–121

    Article  CAS  PubMed  Google Scholar 

  • Malinova V, Wegrzyn G, Narajczyk M (2012) The use of elevated doses of genistein-rich soy extract in the gene expression-targeted isoflavone therapy for Sanfilippo disease patients. JIMD Rep 5:21–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Malinowska M, Wilkinson FL, Langford-Smith KJ et al (2010) Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One 5:e14192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muenzer J (2011) Overview of the mucopolysaccharidoses. Rheumatology (Oxford) 50(Suppl 5):v4–12

    Article  CAS  Google Scholar 

  • Oussoren E, Brands MM, Ruijter GJ, der Ploeg AT, Reuser AJ (2011) Bone, joint and tooth development in mucopolysaccharidoses: relevance to therapeutic options. Biochim Biophys Acta 1812:1542–1556

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska E, Jakobkiewicz-Banecka J, Baranska S et al (2006) Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet 14:846–852

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska E, Jakobkiewicz-Banecka J, Maryniak A et al (2011) Two-year follow-up of Sanfilippo Disease patients treated with a genistein-rich isoflavone extract: assessment of effects on cognitive functions and general status of patients. Med Sci Monit 17:CR196–CR202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Sifuentes M, Doroshow R, Hoft R et al (2007) A follow-up study of MPS I patients treated with laronidase enzyme replacement therapy for 6 years. Mol Genet Metab 90:171–180

    Article  CAS  PubMed  Google Scholar 

  • Simonaro CM, D’Angelo M, He X et al (2008) Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. Am J Pathol 172:112–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tirone E, D’Alessandris C, Hascall VC, Siracusa G, Salustri A (1997) Hyaluronan synthesis by mouse cumulus cells is regulated by interactions between follicle-stimulating hormone (or epidermal growth factor) and a soluble oocyte factor (or transforming growth factor beta1). J Biol Chem 272:4787–4794

    Article  CAS  PubMed  Google Scholar 

  • van der Linden MH, Kruyt MC, Sakkers RJ, de Koning TJ, Oner FC, Castelein RM (2011) Orthopaedic management of Hurler’s disease after hematopoietic stem cell transplantation: a systematic review. J Inherit Metab Dis 34:657–669

    Article  PubMed Central  PubMed  Google Scholar 

  • Weisstein JS, Delgado E, Steinbach LS, Hart K, Packman S (2004) Musculoskeletal manifestations of Hurler syndrome: long-term follow-up after bone marrow transplantation. J Pediatr Orthop 24:97–101

    Article  PubMed  Google Scholar 

  • White KK (2011) Orthopaedic aspects of mucopolysaccharidoses. Rheumatology (Oxford) 50(Suppl 5):v26–v33

    Article  Google Scholar 

  • Yuan WJ, Jia FY, Meng JZ (2009) Effects of genistein on secretion of extracellular matrix components and transforming growth factor beta in high-glucose-cultured rat mesangial cells. J Artif Organs 12:242–246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rene Leen, Vincent Everts, Henk van Lenthe, Wim Kulik and Ronald Wanders for technical assistance and helpful discussions. We thank Gregorz Węgrzyn for kindly providing the protocol for sulfate incorporation and helpful discussions and Axcentua for providing genistein. This work was funded by the WE foundation and the foundation ‘Steun Emma Kinderziekenhuis AMC’.

Compliance with ethics guidelines

Conflict of interest

Sandra Kingma, Tom Wagemans, Lodewijk IJlst, Frits Wijburg and Naomi van Vlies declare that they have no conflicts of interest.

Informed consent

Informed consent for the use of fibroblast cell lines was obtained from all patients or parents of the patients. Apart from experiments using these cell lines, this article does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frits A. Wijburg.

Additional information

Communicated by: Alberto B. Burlina

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingma, S.D.K., Wagemans, T., IJlst, L. et al. Genistein increases glycosaminoglycan levels in mucopolysaccharidosis type I cell models. J Inherit Metab Dis 37, 813–821 (2014). https://doi.org/10.1007/s10545-014-9703-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-014-9703-x

Keywords

Navigation