Skip to main content
Log in

Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PKU:

Phenylketonuria

PAH:

Phenylalanine hydroxylase

NTBC:

2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione

Phe:

L-phenylalanine

Tyr:

L-tyrosine

Trp:

L-tryptophan

LNAA:

Large neutral amino acids

L-DOPA:

L-3,4-dihydroxyphenylalanine

DA:

Dopamine

DOPAC:

L-3,4-dihydroxyphenylacetic acid

3-MT:

3-methoxytyramine

HVA:

Homovanillic acid

5-HTP:

L-5-hydroxytryptophan

5-HIAA:

5-hydroxyindoleacetic acid

References

  • Azen CG, Koch R et al (1991) Intellectual development in 12-year-old children treated for phenylketonuria. Am J Dis Child 145(1):35–39

    CAS  PubMed  Google Scholar 

  • Batshaw ML, Valle D et al (1981) Unsuccessful treatment of phenylketonuria with tyrosine. J Pediatr 99(1):159–160

    Article  CAS  PubMed  Google Scholar 

  • Choi TB, Pardridge WM (1986) Phenylalanine transport at the human blood–brain barrier. Studies with isolated human brain capillaries. J Biol Chem 261(14):6536–6541

    CAS  PubMed  Google Scholar 

  • Christ S, Huijbregts S et al (2010) Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Mol Genet Metab 99(Suppl 1):S22–S32

    Article  CAS  PubMed  Google Scholar 

  • Christensen HN, Streicher JA et al (1948) Effects of feeding individual amino acids upon the distribution of other amino acids between cells and extracellular fluid. J Biol Chem 172(2):515–524

    CAS  PubMed  Google Scholar 

  • De Groot MJ, Hoeksma M et al (2010) Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab 99(Suppl 1):S86–S89

    Article  PubMed  Google Scholar 

  • Feillet F, Van Spronsen FJ et al (2010) Challenges and pitfalls in the management of phenylketonuria. Pediatrics 126(2):333–341

    Article  PubMed  Google Scholar 

  • Harding C (2008) Progress toward cell-directed therapy for phenylketonuria. Clin Genet 74(2):97–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harding CO, Wild K et al (1998) Metabolic engineering as therapy for inborn errors of metabolism - development of mice with phenylalanine hydroxylase expression in muscle. Gene Ther 5(5):677–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Introne WJ, Perry MB et al (2011) A 3-Year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet Metab 103(4):307–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanai Y, Segawa H et al (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4f2 antigen (Cd98). J Biol Chem 273(37):23629–23632

    Article  CAS  PubMed  Google Scholar 

  • Koshimura K, Miwa S et al (1990) Enhancement of dopamine release in vivo from the rat striatum by dialytic perfusion of 6r-L-erythro-5,6,7,8-tetrahydrobiopterin. J Neurochem 54(4):1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt S, Holme E et al (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340(8823):813–817

    Article  CAS  PubMed  Google Scholar 

  • Lou HC, Lykkelund C et al (1987) Increased vigilance and dopamine synthesis by large doses of tyrosine or phenylalanine restriction in phenylketonuria. Acta Paediatr Scand 76(4):560–565

    Article  CAS  PubMed  Google Scholar 

  • Lykkelund C, Nielsen JB et al (1988) Increased neurotransmitter biosynthesis in phenylketonuria induced by phenylalanine restriction or by supplementation of unrestricted diet with large amounts of tyrosine. Eur J Pediatr 148(3):238–245

    Article  CAS  PubMed  Google Scholar 

  • Mastroberardino L, Spindler B et al (1998) Amino-acid transport by heterodimers of 4f2hc/Cd98 and members of a Permease family. Nature 395(6699):288–291

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals-Matalon K et al (2006) Large neutral amino acids in the treatment of phenylketonuria (Pku). J Inherit Metab Dis 29(6):732–738

    Article  CAS  PubMed  Google Scholar 

  • McDonald JD, Bode VC et al (1990) Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci U S A 87(5):1965–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto M, Fitzpatrick T (1957) Competitive inhibition of mammalian tyrosinase by phenylalanine and its relationship to hair pigmentation in phenylketonuria. Nature 179(4552):199–200

    Article  CAS  PubMed  Google Scholar 

  • Ogburn KD, Bottiglieri T et al (2006) Prostaglandin J2 reduces Catechol-O-Methyltransferase activity and enhances dopamine toxicity in neuronal cells. Neurobiol Dis 22(2):294–301

    Article  CAS  PubMed  Google Scholar 

  • Pascucci T, Ventura R et al (2002) Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport 13(18):2561–2564

    Article  CAS  PubMed  Google Scholar 

  • Pascucci T, Andolina D et al (2009) 5-hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. Int J Neuropsychopharmacol 12(8):1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Pietz J, Kreis R et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103(8):1169–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puglisi-Allegra S, Cabib S et al (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11(6):1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Slocum RH, Cummings JG (1991) Amino acid analysis of physiological samples. In: Hommes FA (ed) Techniques in diagnostic human biochemical genetics: A laboratory manual. Wiley-Liss, New York, pp 87–126

    Google Scholar 

  • Thompson AJ, Smith I et al (1990) Neurological deterioration in young adults with phenylketonuria. Lancet 336:602–605

    Article  CAS  PubMed  Google Scholar 

  • Vanzutphen KH, Packman W et al (2007) Executive functioning in children and adolescents with phenylketonuria. Clin Genet 72(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Vogel KR, Arning E et al (2013) Non-physiological amino acid (Npaa) therapy targeting brain phenylalanine reduction: pilot studies in Pahenu2 mice. J Inherit Metab Dis 36(3):513–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walter JH, White FJ (2004) Blood phenylalanine control in adolescents with phenylketonuria. Int J Adolesc Med Health 16(1):41–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grants R01 DK059371 and R01 NS080866 and a grant from the National PKU Alliance (NPKUA, www.npkua.org).

We thank Gloria Baca, Baoyu Lin, Lindsey Stetson, and Katie Cobb for able technical assistance and Dr. Melanie Gillingham for critical review of the manuscript.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cary O. Harding.

Additional information

Communicated by: Nenad Blau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harding, C.O., Winn, S.R., Gibson, K.M. et al. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU). J Inherit Metab Dis 37, 735–743 (2014). https://doi.org/10.1007/s10545-013-9675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-013-9675-2

Keywords

Navigation