Genetically modified pigs for biomedical research

Abstract

During the last two decades, pigs have been used to develop some of the most important large animal models for biomedical research. Advances in pig genome research, genetic modification (GM) of primary pig cells and pig cloning by nuclear transfer, have facilitated the generation of GM pigs for xenotransplantation and various human diseases. This review summarizes the key technologies used for generating GM pigs, including pronuclear microinjection, sperm-mediated gene transfer, somatic cell nuclear transfer by traditional cloning, and somatic cell nuclear transfer by handmade cloning. Broadly used genetic engineering tools for porcine cells are also discussed. We also summarize the GM pig models that have been generated for xenotransplantation and human disease processes, including neurodegenerative diseases, cardiovascular diseases, eye diseases, bone diseases, cancers and epidermal skin diseases, diabetes mellitus, cystic fibrosis, and inherited metabolic diseases. Thus, this review provides an overview of the progress in GM pig research over the last two decades and perspectives for future development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM (2007) Genetic induction of tumorigenesis in swine. Oncogene 26:1038–1045

    PubMed  CAS  Article  Google Scholar 

  2. Adams DH, Kadner A, Chen RH, Farivar RS (2001) Human membrane cofactor protein (MCP, CD 46) protects transgenic pig hearts from hyperacute rejection in primates. Xenotransplantation 8:36–40

    PubMed  CAS  Article  Google Scholar 

  3. Ahn KS, Won JY, Park JK et al (2010) Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer. Biochem Biophys Res Commun 400:667–672

    PubMed  CAS  Article  Google Scholar 

  4. Aigner B, Renner S, Kessler B et al (2010) Transgenic pigs as models for translational biomedical research. J Mol Med 88:653–664

    PubMed  Article  Google Scholar 

  5. Archibald AL, Haley CS, Brown JF et al (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6:157–175

    PubMed  CAS  Article  Google Scholar 

  6. Archibald AL, Bolund L, Churcher C et al (2010) Pig genome sequence–analysis and publication strategy. BMC Genomics 11:438

    PubMed  Article  CAS  Google Scholar 

  7. Aronovich EL, McIvor RS, Hackett PB (2011) The sleeping beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 20:R14–20

    PubMed  CAS  Article  Google Scholar 

  8. Baguisi A, Behboodi E, Melican DT et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–461

    PubMed  CAS  Article  Google Scholar 

  9. Bibikova M, Carroll D, Segal DJ et al (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297

    PubMed  CAS  Article  Google Scholar 

  10. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    PubMed  CAS  Article  Google Scholar 

  11. Biewenga JE, Destree OH, Schrama LH (1997) Plasmid-mediated gene transfer in neurons using the biolistics technique. J Neurosci Methods 71:67–75

    PubMed  CAS  Article  Google Scholar 

  12. Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci 76:3072–3078

    PubMed  CAS  Google Scholar 

  13. Blusch JH, Patience C, Martin U (2002) Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 9:242–251

    PubMed  Article  Google Scholar 

  14. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    PubMed  CAS  Article  Google Scholar 

  15. Bode G, Clausing P, Gervais F et al (2010) The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62:196–220

    PubMed  CAS  Article  Google Scholar 

  16. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    PubMed  CAS  Article  Google Scholar 

  17. Bronson RA, McLaren A (1970) Transfer to the mouse oviduct of eggs with and without the zona pellucida. J Reprod Fertil 22:129–137

    PubMed  CAS  Article  Google Scholar 

  18. Bueler H (1999) Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem 380:613–622

    PubMed  CAS  Article  Google Scholar 

  19. Campbell KH, Alberio R, Choi I et al (2005) Cloning: eight years after Dolly. Reprod Domest Anim 40:256–268

    PubMed  CAS  Article  Google Scholar 

  20. Campbell KH, Fisher P, Chen WC et al (2007) Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68(Suppl 1):S214–231

    PubMed  CAS  Article  Google Scholar 

  21. Chan AW, Kukolj G, Skalka AM, Bremel RD (1999) Timing of DNA integration, transgenic mosaicism, and pronuclear microinjection. Mol Reprod Dev 52:406–413

    PubMed  CAS  Article  Google Scholar 

  22. Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH (1999) Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation 6:194–200

    PubMed  CAS  Article  Google Scholar 

  23. Chen G, Qian H, Starzl T et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11:1295–1298

    PubMed  CAS  Article  Google Scholar 

  24. Cho SK, Kim JH, Park JY et al (2007) Serial cloning of pigs by somatic cell nuclear transfer: restoration of phenotypic normality during serial cloning. Dev Dyn 236:3369–3382

    PubMed  CAS  Article  Google Scholar 

  25. Cho B, Koo OJ, Hwang JI et al (2011) Generation of soluble human tumor necrosis factor-alpha receptor 1-Fc transgenic pig. Transplantation 92:139–147

    PubMed  CAS  Article  Google Scholar 

  26. Czauderna F, Fischer N, Boller K, Kurth R, Tonjes RR (2000) Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 74:4028–4038

    PubMed  CAS  Article  Google Scholar 

  27. Davis HL, Michel ML, Whalen RG (1995) Use of plasmid DNA for direct gene transfer and immunization. Ann N Y Acad Sci 772:21–29

    PubMed  CAS  Article  Google Scholar 

  28. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS (2001) A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71:132–142

    PubMed  CAS  Article  Google Scholar 

  29. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J (2008) Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15:36–45

    PubMed  Article  Google Scholar 

  30. Dorling A, Lombardi G, Binns R, Lechler RI (1996) Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol 26:1378–1387

    PubMed  CAS  Article  Google Scholar 

  31. Du Y, Kragh PM, Zhang Y et al (2007) Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology 68:1104–1110

    PubMed  CAS  Article  Google Scholar 

  32. Du Y, Lin L, Schmidt M et al (2008) High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells 10:325–330

    PubMed  CAS  Article  Google Scholar 

  33. Edwards AO, Miedziak A, Vrabec T et al (1999) Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol 127:426–435

    PubMed  CAS  Article  Google Scholar 

  34. Edwards JL, Schrick FN, McCracken MD et al (2003) Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am J Reprod Immunol 50:113–123

    PubMed  CAS  Article  Google Scholar 

  35. Ekser B, Rigotti P, Gridelli B, Cooper DK (2009) Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol 21:87–92

    PubMed  Article  Google Scholar 

  36. Ellegren H, Chowdhary BP, Johansson M et al (1994) A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137:1089–1100

    PubMed  CAS  Google Scholar 

  37. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    PubMed  Article  CAS  Google Scholar 

  38. Fodor WL, Williams BL, Matis LA et al (1994) Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci U S A 91:11153–11157

    PubMed  CAS  Article  Google Scholar 

  39. Fong CY, Bongso A, Sathananthan H, Ho J, Ng SC (2001) Ultrastructural observations of enzymatically treated human blastocysts: zona-free blastocyst transfer and rescue of blastocysts with hatching difficulties. Hum Reprod 16:540–546

    PubMed  CAS  Article  Google Scholar 

  40. Forouzanfar MH, Foreman KJ, Delossantos AM et al (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378:1461–1484

    PubMed  Article  Google Scholar 

  41. Forster R, Ancian P, Fredholm M, Simianer H, Whitelaw B (2010) The minipig as a platform for new technologies in toxicology. J Pharmacol Toxicol Methods 62:227–235

    PubMed  CAS  Article  Google Scholar 

  42. Fuller CM, Benos DJ (1992) CFTR! Am J Physiol 263:C267–286

    PubMed  CAS  Google Scholar 

  43. Gao F, Li S, Lin L et al (2011a) DNA methylation in peripheral blood cells of pigs cloned by somatic cell nuclear transfer. Cell Reprogram 13:307–314

    PubMed  CAS  Article  Google Scholar 

  44. Gao F, Luo Y, Li S et al (2011b) Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls. PLoS One 6:e25901

    PubMed  CAS  Article  Google Scholar 

  45. Gregorevic P, Blankinship MJ, Chamberlain JS (2004) Viral vectors for gene transfer to striated muscle. Curr Opin Mol Ther 6:491–498

    PubMed  CAS  Google Scholar 

  46. Grompe M, al-Dhalimy M, Finegold M et al (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 7:2298–2307

    PubMed  CAS  Article  Google Scholar 

  47. Hammer RE, Pursel VG, Rexroad CE Jr et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    PubMed  CAS  Article  Google Scholar 

  48. Hao YH, Yong HY, Murphy CN et al (2006) Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 15:739–750

    PubMed  CAS  Article  Google Scholar 

  49. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356

    PubMed  CAS  Article  Google Scholar 

  50. Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108:12013–12017

    Google Scholar 

  51. Heilbronn R and Weger S (2010) Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol143-170

  52. Herbach N, Goeke B, Schneider M, Hermanns W, Wolf E, Wanke R (2005) Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Regul Pept 125:103–117

    PubMed  CAS  Article  Google Scholar 

  53. Hickey RD, Lillegard JB, Fisher JE et al (2011) Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology 54:1351–1359

    PubMed  CAS  Article  Google Scholar 

  54. Hirohito Yamakawa TN, Harasawa R, Yamagami T, Takahashi J, Ishikawa Ken-ichi, Nomura N, Nagashima H (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45:111–118

    Article  Google Scholar 

  55. Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287:E199–206

    PubMed  CAS  Article  Google Scholar 

  56. Inverardi L, Pardi R (1994) Early events in cell-mediated recognition of vascularized xenografts: cooperative interactions between selected lymphocyte subsets and natural antibodies. Immunol Rev 141:71–93

    PubMed  CAS  Article  Google Scholar 

  57. Jakobsen JE, Li J, Moldt B et al (2011) Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts. Mol Biol Rep 38:151–161

    PubMed  CAS  Article  Google Scholar 

  58. Kang YK, Koo DB, Park JS et al (2001) Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173–177

    PubMed  CAS  Article  Google Scholar 

  59. Kato Y, Tani T, Sotomaru Y et al (1998) Eight calves cloned from somatic cells of a single adult. Science 282:2095–2098

    PubMed  CAS  Article  Google Scholar 

  60. Kaushansky K (1998) Thrombopoietin. N Engl J Med 339:746–754

    PubMed  CAS  Article  Google Scholar 

  61. Klose R, Kemter E, Bedke T et al (2005) Expression of biologically active human TRAIL in transgenic pigs. Transplantation 80:222–230

    PubMed  CAS  Article  Google Scholar 

  62. Klymiuk N, Aigner B, Brem G, Wolf E (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77:209–221

    PubMed  CAS  Google Scholar 

  63. Klymiuk N, Bocker W, Schonitzer V et al (2011a) First inducible transgene expression in porcine large animal models. FASEB J. doi:10.1096/fj.11-185041

  64. Klymiuk N, Mundhenk L, Kraehe K et al (2011b) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med. doi:10.1007/s00109-011-0839-y

  65. Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B (2004) Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res 32:e3

    PubMed  Article  Google Scholar 

  66. Koike C, Katayama A, Kadomatsu K et al (1997) Reduction of alpha-Gal epitopes in transgenic pig by introduction of human alpha 1-2 fucosyltransferase. Transplant Proc 29:894

    PubMed  CAS  Article  Google Scholar 

  67. Kraft TW, Allen D, Petters RM, Hao Y, Peng YW, Wong F (2005) Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis 11:1246–1256

    PubMed  CAS  Google Scholar 

  68. Kragh PM, Du Y, Corydon TJ, Purup S, Bolund L, Vajta G (2005) Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation. Theriogenology 64:1536–1545

    PubMed  CAS  Article  Google Scholar 

  69. Kragh PM, Nielsen AL, Li J et al (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res 18:545–558

    PubMed  CAS  Article  Google Scholar 

  70. Kuzmuk KN and Schook LB (2011) Pigs as a model for biomedical sciences. In: Rothschild MF and Ruvinsky A (eds.) The genetics of the pigs, vol. 2: CAB International, Wallingford

  71. Kwon DN, Choi YJ, Park JY et al (2006) Cloning and molecular dissection of the 8.8kb pig uroplakin II promoter using transgenic mice and RT4 cells. J Cell Biochem 99:462–477

    PubMed  CAS  Article  Google Scholar 

  72. Lai L, Kolber-Simonds D, Park KW et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    PubMed  CAS  Article  Google Scholar 

  73. Larsen MO, Wilken M, Gotfredsen CF, Carr RD, Svendsen O, Rolin B (2002) Mild streptozotocin diabetes in the Gottingen minipig. A novel model of moderate insulin deficiency and diabetes. Am J Physiol Endocrinol Metab 282:E1342–1351

    PubMed  CAS  Google Scholar 

  74. Lavitrano M, Forni M, Varzi V et al (1997) Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transplant Proc 29:3508–3509

    PubMed  CAS  Article  Google Scholar 

  75. Lavitrano M, Bacci ML, Forni M et al (2002) Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Natl Acad Sci U S A 99:14230–14235

    PubMed  CAS  Article  Google Scholar 

  76. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A (2006) Sperm-mediated gene transfer. Reprod Fertil Dev 18:19–23

    PubMed  CAS  Article  Google Scholar 

  77. Lazzereschi D, Forni M, Cappello F et al (2000) Efficiency of transgenesis using sperm-mediated gene transfer: generation of hDAF transgenic pigs. Transplant Proc 32:892–894

    PubMed  CAS  Article  Google Scholar 

  78. Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57:755–767

    PubMed  CAS  Article  Google Scholar 

  79. Lee H, Lee B, Kim Y, Paik N, Rho H (2011) Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor. Reprod Domest Anim 46:325–332

    PubMed  CAS  Article  Google Scholar 

  80. Li J, Svarcova O, Villemoes K et al (2008) High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70:800–808

    PubMed  CAS  Article  Google Scholar 

  81. Lin CS, Sun YL, Liu CY et al (1999) Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236:107–114

    PubMed  CAS  Article  Google Scholar 

  82. Lin L, Du Y, Liu Y et al (2009a) Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes. Reprod Biomed Online 18:360–366

    PubMed  Article  Google Scholar 

  83. Lin L, Kragh PM, Purup S et al (2009b) Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes. Reprod Fertil Dev 21:338–344

    PubMed  CAS  Article  Google Scholar 

  84. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751

    PubMed  CAS  Article  Google Scholar 

  85. Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 74:4641–4645

    PubMed  CAS  Article  Google Scholar 

  86. Liu Y, Zeng BH, Shang HT, Cen YY, Wei H (2008) Bama miniature pigs (Sus scrofa domestica) as a model for drug evaluation for humans: comparison of in vitro metabolism and in vivo pharmacokinetics of lovastatin. Comp Med 58:580–587

    PubMed  CAS  Google Scholar 

  87. Luo Y, Bolund L, Sorensen CB (2011a) An improved PCR strategy for fast screening of specific and random integrations in rAAV-mediated gene targeted cell clones. BMC Res Notes 4:246

    PubMed  CAS  Article  Google Scholar 

  88. Luo Y, Bolund L, Sorensen CB (2011b) Pig gene knockout by rAAV-mediated homologous recombination: comparison of BRCA1 gene knockout efficiency in Yucatan and Gottingen fibroblasts with slightly different target sequences. Transgenic Res. doi:10.1007/s11248-011-9563-1

  89. Luo Y, Li J, Liu Y et al (2011c) High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20:975–988

    PubMed  CAS  Article  Google Scholar 

  90. Martin C, Plat M, Nerriere-Daguin V et al (2005) Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 14:373–384

    PubMed  CAS  Article  Google Scholar 

  91. McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA (2010) Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2DeltaN. Transgenic Res 19:869–887

    PubMed  CAS  Article  Google Scholar 

  92. McCurry KR, Kooyman DL, Alvarado CG et al (1995) Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1:423–427

    PubMed  CAS  Article  Google Scholar 

  93. Mikkelsen M, Moller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H (1999) MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol 21:169–175

    PubMed  CAS  Article  Google Scholar 

  94. Miller M, Seidler A, Moalemi A, Pearson TA (1998) Normal triglyceride levels and coronary artery disease events: the Baltimore coronary observational long-term study. J Am Coll Cardiol 31:1252–1257

    PubMed  CAS  Article  Google Scholar 

  95. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    PubMed  CAS  Article  Google Scholar 

  96. Miyagawa S, Murakami H, Murase A et al (2001a) Transgenic pigs with human N-acetylglucosaminyltransferase III. Transplant Proc 33:742–743

    PubMed  CAS  Article  Google Scholar 

  97. Miyagawa S, Murakami H, Takahagi Y et al (2001b) Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem 276:39310–39319

    PubMed  CAS  Article  Google Scholar 

  98. Mohiuddin MM, Corcoran PC, Singh AK et al (2011) B-Cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in Baboons for up to 8 Months. Am J Transplant. doi:10.1111/j.1600-6143.2011.03846.x

  99. Mullan M, Crawford F, Axelman K et al (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1:345–347

    PubMed  CAS  Article  Google Scholar 

  100. Murakami H, Nagashima H, Takahagi Y et al (2000) Production of transgenic pigs expressing human DAF (CD55) regulated by the porcine MCP gene promoter. Transplant Proc 32:2505–2506

    PubMed  CAS  Article  Google Scholar 

  101. Narayana N, Phillips NB, Hua QX, Jia W, Weiss MA (2006) Diabetes mellitus due to misfolding of a beta-cell transcription factor: stereospecific frustration of a Schellman motif in HNF-1alpha. J Mol Biol 362:414–429

    PubMed  CAS  Article  Google Scholar 

  102. Nordstrom JL (2003) Plasmid-based gene transfer and antiprogestin-controllable transgene expression. Ernst Schering Res Found Workshop225-244

  103. Onishi A, Iwamoto M, Akita T et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190

    PubMed  CAS  Article  Google Scholar 

  104. Oropeza M, Petersen B, Carnwath JW et al (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16:522–534

    PubMed  Article  Google Scholar 

  105. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    PubMed  CAS  Article  Google Scholar 

  106. Perez B, Rodriguez-Pascau L, Vilageliu L, Grinberg D, Ugarte M, Desviat LR (2010) Present and future of antisense therapy for splicing modulation in inherited metabolic disease. J Inherit Metab Dis 33:397–403

    PubMed  CAS  Article  Google Scholar 

  107. Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:91–105

    PubMed  Article  Google Scholar 

  108. Petters RM, Alexander CA, Wells KD et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970

    PubMed  CAS  Article  Google Scholar 

  109. Phelan JK, Bok D (2000) A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis 6:116–124

    PubMed  CAS  Google Scholar 

  110. Phelps CJ, Ball SF, Vaught TD et al (2009) Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation 16:477–485

    PubMed  Article  Google Scholar 

  111. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    PubMed  CAS  Article  Google Scholar 

  112. Ramsoondar J, Vaught T, Ball S et al (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180

    PubMed  Article  Google Scholar 

  113. Renner S, Fehlings C, Herbach N et al (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59:1228–1238

    PubMed  CAS  Article  Google Scholar 

  114. Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    PubMed  CAS  Article  Google Scholar 

  115. Rogers CS, Hao Y, Rokhlina T et al (2008a) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577

    PubMed  CAS  Article  Google Scholar 

  116. Rogers CS, Stoltz DA, Meyerholz DK et al (2008b) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    PubMed  CAS  Article  Google Scholar 

  117. Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genetics 136:231–245

    PubMed  CAS  Google Scholar 

  118. Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391

    PubMed  CAS  Article  Google Scholar 

  119. Russo P, O'Regan S (1990) Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 47:317–324

    PubMed  CAS  Google Scholar 

  120. Schmidt M, Kragh PM, Li J et al (2010) Pregnancies and piglets from large white sow recipients after two transfer methods of cloned and transgenic embryos of different pig breeds. Theriogenology 74:1233–1240

    PubMed  CAS  Article  Google Scholar 

  121. Schuurman HJ, Pierson RN 3rd (2008) Progress towards clinical xenotransplantation. Front Biosci 13:204–220

    PubMed  CAS  Article  Google Scholar 

  122. Sharma A, Okabe J, Birch P et al (1996) Reduction in the level of Gal(alpha1,3)Gal in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase. Proc Natl Acad Sci U S A 93:7190–7195

    PubMed  CAS  Article  Google Scholar 

  123. Silva CP, Silva V, Kommineni K, Keefe D (1997) Effect of in vitro culture of mammalian embryos on the architecture of the zona pellucida. Biol Bull 193:235–236

    PubMed  CAS  Google Scholar 

  124. Smith DH, Chen XH, Nonaka M et al (1999) Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:982–992

    PubMed  CAS  Article  Google Scholar 

  125. Sommer JR, Estrada JL, Collins EB et al (2011) Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. Br J Ophthalmol 95:1749–1754

    PubMed  Article  Google Scholar 

  126. Sperandio S, Lulli V, Bacci ML et al (1996) Sperm–mediated DNA transfer in bovine and swine species. Anim Biotechnol 7:59–77

    CAS  Article  Google Scholar 

  127. Sprangers B, Waer M, Billiau AD (2008) Xenotransplantation: where are we in 2008? Kidney Int 74:14–21

    PubMed  CAS  Article  Google Scholar 

  128. Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, Endo F (2000) A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol 11:291–300

    PubMed  CAS  Google Scholar 

  129. Takahagi Y, Fujimura T, Miyagawa S et al (2005) Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 71:331–338

    PubMed  CAS  Article  Google Scholar 

  130. Takeuchi Y, Patience C, Magre S et al (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72:9986–9991

    PubMed  CAS  Google Scholar 

  131. Trounson AO, Moore NW (1974) The survival and development of sheep eggs following complete or partial removal of the zona pellucida. J Reprod Fertil 41:97–105

    PubMed  CAS  Article  Google Scholar 

  132. Tseng YL, Kuwaki K, Dor FJ et al (2005) alpha1,3-Galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching 6months. Transplantation 80:1493–1500

    PubMed  CAS  Article  Google Scholar 

  133. Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes 54(Suppl 2):S40–45

    PubMed  CAS  Article  Google Scholar 

  134. Uchida M, Shimatsu Y, Onoe K et al (2001) Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 10:577–582

    PubMed  CAS  Article  Google Scholar 

  135. Umeyama K, Watanabe M, Saito H et al (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706

    PubMed  CAS  Article  Google Scholar 

  136. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    PubMed  CAS  Article  Google Scholar 

  137. Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47:302–306

    PubMed  CAS  Article  Google Scholar 

  138. Vajta G (2007) Handmade cloning: the future way of nuclear transfer? Trends Biotechnol 25:250–253

    PubMed  CAS  Article  Google Scholar 

  139. Vajta G, Lewis IM, Trounson AO et al (2003) Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro. Biol Reprod 68:571–578

    PubMed  CAS  Article  Google Scholar 

  140. Vajta G, Bartels P, Joubert J, de la Rey M, Treadwell R, Callesen H (2004) Production of a healthy calf by somatic cell nuclear transfer without micromanipulators and carbon dioxide incubators using the Handmade Cloning (HMC) and the Submarine Incubation System (SIS). Theriogenology 62:1465–1472

    PubMed  Article  Google Scholar 

  141. Vajta G, Lewis IM, Tecirlioglu RT (2006) Handmade somatic cell cloning in cattle. Methods Mol Biol 348:183–196

    PubMed  Article  Google Scholar 

  142. Vejlsted M, Du Y, Vajta G, Maddox-Hyttel P (2006) Post-hatching development of the porcine and bovine embryo–defining criteria for expected development in vivo and in vitro. Theriogenology 65:153–165

    PubMed  Article  Google Scholar 

  143. von Wilmowsky C, Stockmann P, Metzler P, Harsch IA, Amann K, Schlegel KA (2010) Establishment of a streptozotocin-induced diabetic domestic pig model and a systematic evaluation of pathological changes in the hard and soft tissue over a 12-month period. Clin Oral Implants Res 21:709–717

    Article  Google Scholar 

  144. Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3:209–220

    PubMed  CAS  Article  Google Scholar 

  145. Wei J, Ouyang H, Wang Y et al (2012) Characterization of a hypertriglyceridemic transgenic miniature swine model expressing human apolipoprotein CIII. FEBS J 279:91–99

    PubMed  CAS  Article  Google Scholar 

  146. Weiss EH, Lilienfeld BG, Muller S et al (2009) HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87:35–43

    PubMed  CAS  Article  Google Scholar 

  147. Wernersson R, Schierup MH, Jorgensen FG et al (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70

    PubMed  Article  CAS  Google Scholar 

  148. Whyte JJ, Samuel M, Mahan E et al (2011a) Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Res 20:989–1001

    PubMed  CAS  Article  Google Scholar 

  149. Whyte JJ, Zhao J, Wells KD et al (2011b) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    PubMed  CAS  Article  Google Scholar 

  150. Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320:63–65

    PubMed  CAS  Article  Google Scholar 

  151. Wilmut I, Paterson L (2003) Somatic cell nuclear transfer. Oncol Res 13:303–307

    PubMed  Google Scholar 

  152. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    PubMed  CAS  Article  Google Scholar 

  153. Wimmers K, Murani E, Ponsuksili S (2010) Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. Brief Funct Genomics 9:251–258

    PubMed  CAS  Article  Google Scholar 

  154. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    PubMed  CAS  Article  Google Scholar 

  155. Woods GL, White KL, Vanderwall DK et al (2003) A mule cloned from fetal cells by nuclear transfer. Science 301:1063

    PubMed  CAS  Article  Google Scholar 

  156. Xue F, Tian XC, Du F et al (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 31:216–220

    PubMed  CAS  Article  Google Scholar 

  157. Yamakawa H, Nagai T, Harasawa R et al (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45:111–118

    CAS  Article  Google Scholar 

  158. Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982

    Google Scholar 

  159. Yang YG, Sykes M (2007) Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 7:519–531

    PubMed  CAS  Article  Google Scholar 

  160. Yang D, Wang CE, Zhao B et al (2010) Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19:3983–3994

    PubMed  CAS  Article  Google Scholar 

  161. Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    PubMed  CAS  Article  Google Scholar 

  162. Zaidi A, Schmoeckel M, Bhatti F et al (1998) Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65:1584–1590

    PubMed  CAS  Article  Google Scholar 

  163. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    PubMed  Article  CAS  Google Scholar 

  164. Zhou CY, McInnes E, Copeman L et al (2005) Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation 12:142–148

    PubMed  Article  Google Scholar 

Download references

Acknowledgement

Our pig model development is supported by grants from the “Pig and Health Platform” of the Danish National Advanced Technology Foundation (Højteknologifonden), the Danish Agency for Science, Technology and Innovation (grant no. 274-05-0535), the Danish Genetically Modified Animal Resource (DAGMAR), and the “Sino-Danish Breast Cancer Research Centre” under the auspices of the Danish National Research Foundation (Grundforskningsfonden) and the National Natural Science Foundation of China.

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yonglun Luo.

Additional information

Communicated by: Markus Grompe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, Y., Lin, L., Bolund, L. et al. Genetically modified pigs for biomedical research. J Inherit Metab Dis 35, 695–713 (2012). https://doi.org/10.1007/s10545-012-9475-0

Download citation

Keywords

  • Retinitis Pigmentosa
  • Zona Pellucida
  • Somatic Cell Nuclear Transfer
  • Mouse Mammary Tumor Virus
  • Human Neurodegenerative Disease