Journal of Inherited Metabolic Disease

, Volume 35, Issue 4, pp 695–713 | Cite as

Genetically modified pigs for biomedical research

  • Yonglun LuoEmail author
  • Lin Lin
  • Lars Bolund
  • Thomas G. Jensen
  • Charlotte Brandt Sørensen
SSIEM Symposium 2011


During the last two decades, pigs have been used to develop some of the most important large animal models for biomedical research. Advances in pig genome research, genetic modification (GM) of primary pig cells and pig cloning by nuclear transfer, have facilitated the generation of GM pigs for xenotransplantation and various human diseases. This review summarizes the key technologies used for generating GM pigs, including pronuclear microinjection, sperm-mediated gene transfer, somatic cell nuclear transfer by traditional cloning, and somatic cell nuclear transfer by handmade cloning. Broadly used genetic engineering tools for porcine cells are also discussed. We also summarize the GM pig models that have been generated for xenotransplantation and human disease processes, including neurodegenerative diseases, cardiovascular diseases, eye diseases, bone diseases, cancers and epidermal skin diseases, diabetes mellitus, cystic fibrosis, and inherited metabolic diseases. Thus, this review provides an overview of the progress in GM pig research over the last two decades and perspectives for future development.


Retinitis Pigmentosa Zona Pellucida Somatic Cell Nuclear Transfer Mouse Mammary Tumor Virus Human Neurodegenerative Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our pig model development is supported by grants from the “Pig and Health Platform” of the Danish National Advanced Technology Foundation (Højteknologifonden), the Danish Agency for Science, Technology and Innovation (grant no. 274-05-0535), the Danish Genetically Modified Animal Resource (DAGMAR), and the “Sino-Danish Breast Cancer Research Centre” under the auspices of the Danish National Research Foundation (Grundforskningsfonden) and the National Natural Science Foundation of China.

Conflict of interest



  1. Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM (2007) Genetic induction of tumorigenesis in swine. Oncogene 26:1038–1045PubMedCrossRefGoogle Scholar
  2. Adams DH, Kadner A, Chen RH, Farivar RS (2001) Human membrane cofactor protein (MCP, CD 46) protects transgenic pig hearts from hyperacute rejection in primates. Xenotransplantation 8:36–40PubMedCrossRefGoogle Scholar
  3. Ahn KS, Won JY, Park JK et al (2010) Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer. Biochem Biophys Res Commun 400:667–672PubMedCrossRefGoogle Scholar
  4. Aigner B, Renner S, Kessler B et al (2010) Transgenic pigs as models for translational biomedical research. J Mol Med 88:653–664PubMedCrossRefGoogle Scholar
  5. Archibald AL, Haley CS, Brown JF et al (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6:157–175PubMedCrossRefGoogle Scholar
  6. Archibald AL, Bolund L, Churcher C et al (2010) Pig genome sequence–analysis and publication strategy. BMC Genomics 11:438PubMedCrossRefGoogle Scholar
  7. Aronovich EL, McIvor RS, Hackett PB (2011) The sleeping beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 20:R14–20PubMedCrossRefGoogle Scholar
  8. Baguisi A, Behboodi E, Melican DT et al (1999) Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17:456–461PubMedCrossRefGoogle Scholar
  9. Bibikova M, Carroll D, Segal DJ et al (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297PubMedCrossRefGoogle Scholar
  10. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedCrossRefGoogle Scholar
  11. Biewenga JE, Destree OH, Schrama LH (1997) Plasmid-mediated gene transfer in neurons using the biolistics technique. J Neurosci Methods 71:67–75PubMedCrossRefGoogle Scholar
  12. Bleck GT, White BR, Miller DJ, Wheeler MB (1998) Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci 76:3072–3078PubMedGoogle Scholar
  13. Blusch JH, Patience C, Martin U (2002) Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 9:242–251PubMedCrossRefGoogle Scholar
  14. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  15. Bode G, Clausing P, Gervais F et al (2010) The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62:196–220PubMedCrossRefGoogle Scholar
  16. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846PubMedCrossRefGoogle Scholar
  17. Bronson RA, McLaren A (1970) Transfer to the mouse oviduct of eggs with and without the zona pellucida. J Reprod Fertil 22:129–137PubMedCrossRefGoogle Scholar
  18. Bueler H (1999) Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem 380:613–622PubMedCrossRefGoogle Scholar
  19. Campbell KH, Alberio R, Choi I et al (2005) Cloning: eight years after Dolly. Reprod Domest Anim 40:256–268PubMedCrossRefGoogle Scholar
  20. Campbell KH, Fisher P, Chen WC et al (2007) Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68(Suppl 1):S214–231PubMedCrossRefGoogle Scholar
  21. Chan AW, Kukolj G, Skalka AM, Bremel RD (1999) Timing of DNA integration, transgenic mosaicism, and pronuclear microinjection. Mol Reprod Dev 52:406–413PubMedCrossRefGoogle Scholar
  22. Chen RH, Naficy S, Logan JS, Diamond LE, Adams DH (1999) Hearts from transgenic pigs constructed with CD59/DAF genomic clones demonstrate improved survival in primates. Xenotransplantation 6:194–200PubMedCrossRefGoogle Scholar
  23. Chen G, Qian H, Starzl T et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11:1295–1298PubMedCrossRefGoogle Scholar
  24. Cho SK, Kim JH, Park JY et al (2007) Serial cloning of pigs by somatic cell nuclear transfer: restoration of phenotypic normality during serial cloning. Dev Dyn 236:3369–3382PubMedCrossRefGoogle Scholar
  25. Cho B, Koo OJ, Hwang JI et al (2011) Generation of soluble human tumor necrosis factor-alpha receptor 1-Fc transgenic pig. Transplantation 92:139–147PubMedCrossRefGoogle Scholar
  26. Czauderna F, Fischer N, Boller K, Kurth R, Tonjes RR (2000) Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 74:4028–4038PubMedCrossRefGoogle Scholar
  27. Davis HL, Michel ML, Whalen RG (1995) Use of plasmid DNA for direct gene transfer and immunization. Ann N Y Acad Sci 772:21–29PubMedCrossRefGoogle Scholar
  28. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS (2001) A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71:132–142PubMedCrossRefGoogle Scholar
  29. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J (2008) Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15:36–45PubMedCrossRefGoogle Scholar
  30. Dorling A, Lombardi G, Binns R, Lechler RI (1996) Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur J Immunol 26:1378–1387PubMedCrossRefGoogle Scholar
  31. Du Y, Kragh PM, Zhang Y et al (2007) Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology 68:1104–1110PubMedCrossRefGoogle Scholar
  32. Du Y, Lin L, Schmidt M et al (2008) High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival. Cloning Stem Cells 10:325–330PubMedCrossRefGoogle Scholar
  33. Edwards AO, Miedziak A, Vrabec T et al (1999) Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol 127:426–435PubMedCrossRefGoogle Scholar
  34. Edwards JL, Schrick FN, McCracken MD et al (2003) Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am J Reprod Immunol 50:113–123PubMedCrossRefGoogle Scholar
  35. Ekser B, Rigotti P, Gridelli B, Cooper DK (2009) Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol 21:87–92PubMedCrossRefGoogle Scholar
  36. Ellegren H, Chowdhary BP, Johansson M et al (1994) A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137:1089–1100PubMedGoogle Scholar
  37. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553PubMedCrossRefGoogle Scholar
  38. Fodor WL, Williams BL, Matis LA et al (1994) Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci U S A 91:11153–11157PubMedCrossRefGoogle Scholar
  39. Fong CY, Bongso A, Sathananthan H, Ho J, Ng SC (2001) Ultrastructural observations of enzymatically treated human blastocysts: zona-free blastocyst transfer and rescue of blastocysts with hatching difficulties. Hum Reprod 16:540–546PubMedCrossRefGoogle Scholar
  40. Forouzanfar MH, Foreman KJ, Delossantos AM et al (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378:1461–1484PubMedCrossRefGoogle Scholar
  41. Forster R, Ancian P, Fredholm M, Simianer H, Whitelaw B (2010) The minipig as a platform for new technologies in toxicology. J Pharmacol Toxicol Methods 62:227–235PubMedCrossRefGoogle Scholar
  42. Fuller CM, Benos DJ (1992) CFTR! Am J Physiol 263:C267–286PubMedGoogle Scholar
  43. Gao F, Li S, Lin L et al (2011a) DNA methylation in peripheral blood cells of pigs cloned by somatic cell nuclear transfer. Cell Reprogram 13:307–314PubMedCrossRefGoogle Scholar
  44. Gao F, Luo Y, Li S et al (2011b) Comparison of gene expression and genome-wide DNA methylation profiling between phenotypically normal cloned pigs and conventionally bred controls. PLoS One 6:e25901PubMedCrossRefGoogle Scholar
  45. Gregorevic P, Blankinship MJ, Chamberlain JS (2004) Viral vectors for gene transfer to striated muscle. Curr Opin Mol Ther 6:491–498PubMedGoogle Scholar
  46. Grompe M, al-Dhalimy M, Finegold M et al (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 7:2298–2307PubMedCrossRefGoogle Scholar
  47. Hammer RE, Pursel VG, Rexroad CE Jr et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683PubMedCrossRefGoogle Scholar
  48. Hao YH, Yong HY, Murphy CN et al (2006) Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 15:739–750PubMedCrossRefGoogle Scholar
  49. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  50. Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108:12013–12017Google Scholar
  51. Heilbronn R and Weger S (2010) Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol143-170Google Scholar
  52. Herbach N, Goeke B, Schneider M, Hermanns W, Wolf E, Wanke R (2005) Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Regul Pept 125:103–117PubMedCrossRefGoogle Scholar
  53. Hickey RD, Lillegard JB, Fisher JE et al (2011) Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology 54:1351–1359PubMedCrossRefGoogle Scholar
  54. Hirohito Yamakawa TN, Harasawa R, Yamagami T, Takahashi J, Ishikawa Ken-ichi, Nomura N, Nagashima H (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45:111–118CrossRefGoogle Scholar
  55. Holst JJ, Gromada J (2004) Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 287:E199–206PubMedCrossRefGoogle Scholar
  56. Inverardi L, Pardi R (1994) Early events in cell-mediated recognition of vascularized xenografts: cooperative interactions between selected lymphocyte subsets and natural antibodies. Immunol Rev 141:71–93PubMedCrossRefGoogle Scholar
  57. Jakobsen JE, Li J, Moldt B et al (2011) Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts. Mol Biol Rep 38:151–161PubMedCrossRefGoogle Scholar
  58. Kang YK, Koo DB, Park JS et al (2001) Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173–177PubMedCrossRefGoogle Scholar
  59. Kato Y, Tani T, Sotomaru Y et al (1998) Eight calves cloned from somatic cells of a single adult. Science 282:2095–2098PubMedCrossRefGoogle Scholar
  60. Kaushansky K (1998) Thrombopoietin. N Engl J Med 339:746–754PubMedCrossRefGoogle Scholar
  61. Klose R, Kemter E, Bedke T et al (2005) Expression of biologically active human TRAIL in transgenic pigs. Transplantation 80:222–230PubMedCrossRefGoogle Scholar
  62. Klymiuk N, Aigner B, Brem G, Wolf E (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77:209–221PubMedGoogle Scholar
  63. Klymiuk N, Bocker W, Schonitzer V et al (2011a) First inducible transgene expression in porcine large animal models. FASEB J. doi: 10.1096/fj.11-185041
  64. Klymiuk N, Mundhenk L, Kraehe K et al (2011b) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med. doi: 10.1007/s00109-011-0839-y
  65. Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B (2004) Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res 32:e3PubMedCrossRefGoogle Scholar
  66. Koike C, Katayama A, Kadomatsu K et al (1997) Reduction of alpha-Gal epitopes in transgenic pig by introduction of human alpha 1-2 fucosyltransferase. Transplant Proc 29:894PubMedCrossRefGoogle Scholar
  67. Kraft TW, Allen D, Petters RM, Hao Y, Peng YW, Wong F (2005) Altered light responses of single rod photoreceptors in transgenic pigs expressing P347L or P347S rhodopsin. Mol Vis 11:1246–1256PubMedGoogle Scholar
  68. Kragh PM, Du Y, Corydon TJ, Purup S, Bolund L, Vajta G (2005) Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation. Theriogenology 64:1536–1545PubMedCrossRefGoogle Scholar
  69. Kragh PM, Nielsen AL, Li J et al (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res 18:545–558PubMedCrossRefGoogle Scholar
  70. Kuzmuk KN and Schook LB (2011) Pigs as a model for biomedical sciences. In: Rothschild MF and Ruvinsky A (eds.) The genetics of the pigs, vol. 2: CAB International, Wallingford Google Scholar
  71. Kwon DN, Choi YJ, Park JY et al (2006) Cloning and molecular dissection of the 8.8kb pig uroplakin II promoter using transgenic mice and RT4 cells. J Cell Biochem 99:462–477PubMedCrossRefGoogle Scholar
  72. Lai L, Kolber-Simonds D, Park KW et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092PubMedCrossRefGoogle Scholar
  73. Larsen MO, Wilken M, Gotfredsen CF, Carr RD, Svendsen O, Rolin B (2002) Mild streptozotocin diabetes in the Gottingen minipig. A novel model of moderate insulin deficiency and diabetes. Am J Physiol Endocrinol Metab 282:E1342–1351PubMedGoogle Scholar
  74. Lavitrano M, Forni M, Varzi V et al (1997) Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transplant Proc 29:3508–3509PubMedCrossRefGoogle Scholar
  75. Lavitrano M, Bacci ML, Forni M et al (2002) Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Natl Acad Sci U S A 99:14230–14235PubMedCrossRefGoogle Scholar
  76. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A (2006) Sperm-mediated gene transfer. Reprod Fertil Dev 18:19–23PubMedCrossRefGoogle Scholar
  77. Lazzereschi D, Forni M, Cappello F et al (2000) Efficiency of transgenesis using sperm-mediated gene transfer: generation of hDAF transgenic pigs. Transplant Proc 32:892–894PubMedCrossRefGoogle Scholar
  78. Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57:755–767PubMedCrossRefGoogle Scholar
  79. Lee H, Lee B, Kim Y, Paik N, Rho H (2011) Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor. Reprod Domest Anim 46:325–332PubMedCrossRefGoogle Scholar
  80. Li J, Svarcova O, Villemoes K et al (2008) High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70:800–808PubMedCrossRefGoogle Scholar
  81. Lin CS, Sun YL, Liu CY et al (1999) Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236:107–114PubMedCrossRefGoogle Scholar
  82. Lin L, Du Y, Liu Y et al (2009a) Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes. Reprod Biomed Online 18:360–366PubMedCrossRefGoogle Scholar
  83. Lin L, Kragh PM, Purup S et al (2009b) Osmotic stress induced by sodium chloride, sucrose or trehalose improves cryotolerance and developmental competence of porcine oocytes. Reprod Fertil Dev 21:338–344PubMedCrossRefGoogle Scholar
  84. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751PubMedCrossRefGoogle Scholar
  85. Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A 74:4641–4645PubMedCrossRefGoogle Scholar
  86. Liu Y, Zeng BH, Shang HT, Cen YY, Wei H (2008) Bama miniature pigs (Sus scrofa domestica) as a model for drug evaluation for humans: comparison of in vitro metabolism and in vivo pharmacokinetics of lovastatin. Comp Med 58:580–587PubMedGoogle Scholar
  87. Luo Y, Bolund L, Sorensen CB (2011a) An improved PCR strategy for fast screening of specific and random integrations in rAAV-mediated gene targeted cell clones. BMC Res Notes 4:246PubMedCrossRefGoogle Scholar
  88. Luo Y, Bolund L, Sorensen CB (2011b) Pig gene knockout by rAAV-mediated homologous recombination: comparison of BRCA1 gene knockout efficiency in Yucatan and Gottingen fibroblasts with slightly different target sequences. Transgenic Res. doi: 10.1007/s11248-011-9563-1
  89. Luo Y, Li J, Liu Y et al (2011c) High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20:975–988PubMedCrossRefGoogle Scholar
  90. Martin C, Plat M, Nerriere-Daguin V et al (2005) Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res 14:373–384PubMedCrossRefGoogle Scholar
  91. McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA (2010) Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2DeltaN. Transgenic Res 19:869–887PubMedCrossRefGoogle Scholar
  92. McCurry KR, Kooyman DL, Alvarado CG et al (1995) Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1:423–427PubMedCrossRefGoogle Scholar
  93. Mikkelsen M, Moller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H (1999) MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol 21:169–175PubMedCrossRefGoogle Scholar
  94. Miller M, Seidler A, Moalemi A, Pearson TA (1998) Normal triglyceride levels and coronary artery disease events: the Baltimore coronary observational long-term study. J Am Coll Cardiol 31:1252–1257PubMedCrossRefGoogle Scholar
  95. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148PubMedCrossRefGoogle Scholar
  96. Miyagawa S, Murakami H, Murase A et al (2001a) Transgenic pigs with human N-acetylglucosaminyltransferase III. Transplant Proc 33:742–743PubMedCrossRefGoogle Scholar
  97. Miyagawa S, Murakami H, Takahagi Y et al (2001b) Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase III in transgenic pig. J Biol Chem 276:39310–39319PubMedCrossRefGoogle Scholar
  98. Mohiuddin MM, Corcoran PC, Singh AK et al (2011) B-Cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in Baboons for up to 8 Months. Am J Transplant. doi: 10.1111/j.1600-6143.2011.03846.x
  99. Mullan M, Crawford F, Axelman K et al (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1:345–347PubMedCrossRefGoogle Scholar
  100. Murakami H, Nagashima H, Takahagi Y et al (2000) Production of transgenic pigs expressing human DAF (CD55) regulated by the porcine MCP gene promoter. Transplant Proc 32:2505–2506PubMedCrossRefGoogle Scholar
  101. Narayana N, Phillips NB, Hua QX, Jia W, Weiss MA (2006) Diabetes mellitus due to misfolding of a beta-cell transcription factor: stereospecific frustration of a Schellman motif in HNF-1alpha. J Mol Biol 362:414–429PubMedCrossRefGoogle Scholar
  102. Nordstrom JL (2003) Plasmid-based gene transfer and antiprogestin-controllable transgene expression. Ernst Schering Res Found Workshop225-244Google Scholar
  103. Onishi A, Iwamoto M, Akita T et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190PubMedCrossRefGoogle Scholar
  104. Oropeza M, Petersen B, Carnwath JW et al (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16:522–534PubMedCrossRefGoogle Scholar
  105. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMedCrossRefGoogle Scholar
  106. Perez B, Rodriguez-Pascau L, Vilageliu L, Grinberg D, Ugarte M, Desviat LR (2010) Present and future of antisense therapy for splicing modulation in inherited metabolic disease. J Inherit Metab Dis 33:397–403PubMedCrossRefGoogle Scholar
  107. Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenografts. Comp Immunol Microbiol Infect Dis 32:91–105PubMedCrossRefGoogle Scholar
  108. Petters RM, Alexander CA, Wells KD et al (1997) Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15:965–970PubMedCrossRefGoogle Scholar
  109. Phelan JK, Bok D (2000) A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis 6:116–124PubMedGoogle Scholar
  110. Phelps CJ, Ball SF, Vaught TD et al (2009) Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation 16:477–485PubMedCrossRefGoogle Scholar
  111. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973PubMedCrossRefGoogle Scholar
  112. Ramsoondar J, Vaught T, Ball S et al (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180PubMedCrossRefGoogle Scholar
  113. Renner S, Fehlings C, Herbach N et al (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59:1228–1238PubMedCrossRefGoogle Scholar
  114. Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073PubMedCrossRefGoogle Scholar
  115. Rogers CS, Hao Y, Rokhlina T et al (2008a) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577PubMedCrossRefGoogle Scholar
  116. Rogers CS, Stoltz DA, Meyerholz DK et al (2008b) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841PubMedCrossRefGoogle Scholar
  117. Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genetics 136:231–245PubMedGoogle Scholar
  118. Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391PubMedCrossRefGoogle Scholar
  119. Russo P, O'Regan S (1990) Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 47:317–324PubMedGoogle Scholar
  120. Schmidt M, Kragh PM, Li J et al (2010) Pregnancies and piglets from large white sow recipients after two transfer methods of cloned and transgenic embryos of different pig breeds. Theriogenology 74:1233–1240PubMedCrossRefGoogle Scholar
  121. Schuurman HJ, Pierson RN 3rd (2008) Progress towards clinical xenotransplantation. Front Biosci 13:204–220PubMedCrossRefGoogle Scholar
  122. Sharma A, Okabe J, Birch P et al (1996) Reduction in the level of Gal(alpha1,3)Gal in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase. Proc Natl Acad Sci U S A 93:7190–7195PubMedCrossRefGoogle Scholar
  123. Silva CP, Silva V, Kommineni K, Keefe D (1997) Effect of in vitro culture of mammalian embryos on the architecture of the zona pellucida. Biol Bull 193:235–236PubMedGoogle Scholar
  124. Smith DH, Chen XH, Nonaka M et al (1999) Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:982–992PubMedCrossRefGoogle Scholar
  125. Sommer JR, Estrada JL, Collins EB et al (2011) Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. Br J Ophthalmol 95:1749–1754PubMedCrossRefGoogle Scholar
  126. Sperandio S, Lulli V, Bacci ML et al (1996) Sperm–mediated DNA transfer in bovine and swine species. Anim Biotechnol 7:59–77CrossRefGoogle Scholar
  127. Sprangers B, Waer M, Billiau AD (2008) Xenotransplantation: where are we in 2008? Kidney Int 74:14–21PubMedCrossRefGoogle Scholar
  128. Sun MS, Hattori S, Kubo S, Awata H, Matsuda I, Endo F (2000) A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice. J Am Soc Nephrol 11:291–300PubMedGoogle Scholar
  129. Takahagi Y, Fujimura T, Miyagawa S et al (2005) Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 71:331–338PubMedCrossRefGoogle Scholar
  130. Takeuchi Y, Patience C, Magre S et al (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72:9986–9991PubMedGoogle Scholar
  131. Trounson AO, Moore NW (1974) The survival and development of sheep eggs following complete or partial removal of the zona pellucida. J Reprod Fertil 41:97–105PubMedCrossRefGoogle Scholar
  132. Tseng YL, Kuwaki K, Dor FJ et al (2005) alpha1,3-Galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching 6months. Transplantation 80:1493–1500PubMedCrossRefGoogle Scholar
  133. Tuomi T (2005) Type 1 and type 2 diabetes: what do they have in common? Diabetes 54(Suppl 2):S40–45PubMedCrossRefGoogle Scholar
  134. Uchida M, Shimatsu Y, Onoe K et al (2001) Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 10:577–582PubMedCrossRefGoogle Scholar
  135. Umeyama K, Watanabe M, Saito H et al (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18:697–706PubMedCrossRefGoogle Scholar
  136. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646PubMedCrossRefGoogle Scholar
  137. Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of the pig (Sus scrofa). J Mol Evol 47:302–306PubMedCrossRefGoogle Scholar
  138. Vajta G (2007) Handmade cloning: the future way of nuclear transfer? Trends Biotechnol 25:250–253PubMedCrossRefGoogle Scholar
  139. Vajta G, Lewis IM, Trounson AO et al (2003) Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro. Biol Reprod 68:571–578PubMedCrossRefGoogle Scholar
  140. Vajta G, Bartels P, Joubert J, de la Rey M, Treadwell R, Callesen H (2004) Production of a healthy calf by somatic cell nuclear transfer without micromanipulators and carbon dioxide incubators using the Handmade Cloning (HMC) and the Submarine Incubation System (SIS). Theriogenology 62:1465–1472PubMedCrossRefGoogle Scholar
  141. Vajta G, Lewis IM, Tecirlioglu RT (2006) Handmade somatic cell cloning in cattle. Methods Mol Biol 348:183–196PubMedCrossRefGoogle Scholar
  142. Vejlsted M, Du Y, Vajta G, Maddox-Hyttel P (2006) Post-hatching development of the porcine and bovine embryo–defining criteria for expected development in vivo and in vitro. Theriogenology 65:153–165PubMedCrossRefGoogle Scholar
  143. von Wilmowsky C, Stockmann P, Metzler P, Harsch IA, Amann K, Schlegel KA (2010) Establishment of a streptozotocin-induced diabetic domestic pig model and a systematic evaluation of pathological changes in the hard and soft tissue over a 12-month period. Clin Oral Implants Res 21:709–717CrossRefGoogle Scholar
  144. Wall RJ (2001) Pronuclear microinjection. Cloning Stem Cells 3:209–220PubMedCrossRefGoogle Scholar
  145. Wei J, Ouyang H, Wang Y et al (2012) Characterization of a hypertriglyceridemic transgenic miniature swine model expressing human apolipoprotein CIII. FEBS J 279:91–99PubMedCrossRefGoogle Scholar
  146. Weiss EH, Lilienfeld BG, Muller S et al (2009) HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87:35–43PubMedCrossRefGoogle Scholar
  147. Wernersson R, Schierup MH, Jorgensen FG et al (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70PubMedCrossRefGoogle Scholar
  148. Whyte JJ, Samuel M, Mahan E et al (2011a) Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Res 20:989–1001PubMedCrossRefGoogle Scholar
  149. Whyte JJ, Zhao J, Wells KD et al (2011b) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2PubMedCrossRefGoogle Scholar
  150. Willadsen SM (1986) Nuclear transplantation in sheep embryos. Nature 320:63–65PubMedCrossRefGoogle Scholar
  151. Wilmut I, Paterson L (2003) Somatic cell nuclear transfer. Oncol Res 13:303–307PubMedGoogle Scholar
  152. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  153. Wimmers K, Murani E, Ponsuksili S (2010) Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. Brief Funct Genomics 9:251–258PubMedCrossRefGoogle Scholar
  154. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212PubMedCrossRefGoogle Scholar
  155. Woods GL, White KL, Vanderwall DK et al (2003) A mule cloned from fetal cells by nuclear transfer. Science 301:1063PubMedCrossRefGoogle Scholar
  156. Xue F, Tian XC, Du F et al (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 31:216–220PubMedCrossRefGoogle Scholar
  157. Yamakawa H, Nagai T, Harasawa R et al (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45:111–118CrossRefGoogle Scholar
  158. Yang D, Yang H, Li W et al (2011) Generation of PPARgamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Res 21:979–982Google Scholar
  159. Yang YG, Sykes M (2007) Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 7:519–531PubMedCrossRefGoogle Scholar
  160. Yang D, Wang CE, Zhao B et al (2010) Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19:3983–3994PubMedCrossRefGoogle Scholar
  161. Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602PubMedCrossRefGoogle Scholar
  162. Zaidi A, Schmoeckel M, Bhatti F et al (1998) Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65:1584–1590PubMedCrossRefGoogle Scholar
  163. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153PubMedCrossRefGoogle Scholar
  164. Zhou CY, McInnes E, Copeman L et al (2005) Transgenic pigs expressing human CD59, in combination with human membrane cofactor protein and human decay-accelerating factor. Xenotransplantation 12:142–148PubMedCrossRefGoogle Scholar

Copyright information

© SSIEM and Springer 2012

Authors and Affiliations

  • Yonglun Luo
    • 1
    Email author
  • Lin Lin
    • 1
  • Lars Bolund
    • 1
  • Thomas G. Jensen
    • 1
  • Charlotte Brandt Sørensen
    • 1
  1. 1.Department of BiomedicineAarhus UniversityAarhus CDenmark

Personalised recommendations