Skip to main content
Log in

Mitochondrial DNA transcription regulation and nucleoid organization

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Mitochondrial biogenesis is a complex process depending on both nuclear and mitochondrial DNA (mtDNA) transcription regulation to tightly coordinate mitochondrial levels and the cell’s energy demand. The energy requirements for a cell to support its metabolic function can change in response to varying physiological conditions, such as, proliferation and differentiation. Therefore, mitochondrial transcription regulation is constantly being modulated in order to establish efficient mitochondrial oxidative metabolism and proper cellular function. The aim of this article is to review the function of major protein factors that are directly involved in the process of mtDNA transcription regulation, as well as, the importance of mitochondrial nucleoid structure and its influence on mtDNA segregation and transcription regulation. Here, we discuss the current knowledge on the molecular mode of action of transcription factors comprising the mitochondrial transcriptional machinery, as well as the action of nuclear receptors on regulatory regions of the mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, Takio K, Hamasaki N, Kang D (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Ardail D, Lerme F, Puymirat J, Morel G (1993) Evidence for the presence of alpha and beta-related T3 receptors in rat liver mitochondria. Eur J Cell Biol 62:105–113

    PubMed  CAS  Google Scholar 

  • Battersby BJ, Loredo-Osti JC, Shoubridge EA (2003) Nuclear genetic control of mitochondrial DNA segregation. Nat Genet 33:183–186

    Article  PubMed  CAS  Google Scholar 

  • Berdanier CD, Everts HB, Hermoyian C, Mathews CE (2001) Role of vitamin A in mitochondrial gene expression. Diabetes Res Clin Pract 54(Suppl 2):S11–27

    Article  PubMed  CAS  Google Scholar 

  • Bettini E, Maggi A (1992) Estrogen induction of cytochrome c oxidase subunit III in rat hippocampus. J Neurochem 58:1923–1929

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Rousseau D, Burke S (2008) The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283:3665–3675

    Article  PubMed  CAS  Google Scholar 

  • Bonawitz ND, Clayton DA, Shadel GS (2006) Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 24:813–825

    Article  PubMed  CAS  Google Scholar 

  • Camasamudram V, Fang JK, Avadhani NG (2003) Transcription termination at the mouse mitochondrial H-strand promoter distal site requires an A/T rich sequence motif and sequence specific DNA binding proteins. Eur J Biochem 270:1128–1140

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi J, Yonekawa H (2007) The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 39:386–390

    Article  PubMed  CAS  Google Scholar 

  • Casas F, Rochard P, Rodier A, Cassar-Malek I, Marchal-Victorion S, Wiesner RJ, Cabello G, Wrutniak C (1999) A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19:7913–7924

    PubMed  CAS  Google Scholar 

  • Casas F, Daury L, Grandemange S, Busson M, Seyer P, Hatier R, Carazo A, Cabello G, Wrutniak-Cabello C (2003) Endocrine regulation of mitochondrial activity: involvement of truncated RXRalpha and c-Erb Aalpha1 proteins. FASEB J 17:426–436

    Article  PubMed  CAS  Google Scholar 

  • Cooper MP, Qu L, Rohas LM, Lin J, Yang W, Erdjument-Bromage H, Tempst P, Spiegelman BM (2006) Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex. Genes Dev 20:2996–3009

    Article  PubMed  CAS  Google Scholar 

  • Cotney J, Wang Z, Shadel GS (2007) Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFB1 and h-mtTFB2 in mitochondrial biogenesis and gene expression. Nucleic Acids Res 35:4042–4054

    Article  PubMed  CAS  Google Scholar 

  • Cotney J, McKay SE, Shadel GS (2009) Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet 18:2670–2682

    Article  PubMed  CAS  Google Scholar 

  • Dairaghi DJ, Shadel GS, Clayton DA (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol 249:11–28

    Article  PubMed  CAS  Google Scholar 

  • D'Aurelio M, Gajewski CD, Lin MT, Mauck WM, Shao LZ, Lenaz G, Moraes CT, Manfredi G (2004) Heterologous mitochondrial DNA recombination in human cells. Hum Mol Genet 13:3171–3179

    Article  PubMed  Google Scholar 

  • Demonacos C, Tsawdaroglou NC, Djordjevic-Markovic R, Papalopoulou M, Galanopoulos V, Papadogeorgaki S, Sekeris CE (1993) Import of the glucocorticoid receptor into rat liver mitochondria in vivo and in vitro. J Steroid Biochem Mol Biol 46:401–413

    Article  PubMed  CAS  Google Scholar 

  • Demonacos C, Djordjevic-Markovic R, Tsawdaroglou N, Sekeris CE (1995) The mitochondrion as a primary site of action of glucocorticoids: the interaction of the glucocorticoid receptor with mitochondrial DNA sequences showing partial similarity to the nuclear glucocorticoid responsive elements. J Steroid Biochem Mol Biol 55:43–55

    Article  PubMed  CAS  Google Scholar 

  • Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (2002) Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res 30:4626–4633

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Hirano M, Schon EA (2006) Approaches to the treatment of mitochondrial diseases. Muscle Nerve 34:265–283

    Article  PubMed  CAS  Google Scholar 

  • Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, Rustin P, Gustafsson CM, Larsson NG (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944

    Article  PubMed  CAS  Google Scholar 

  • Enriquez JA, Fernandez-Silva P, Garrido-Perez N, Lopez-Perez MJ, Perez-Martos A, Montoya J (1999) Direct regulation of mitochondrial RNA synthesis by thyroid hormone. Mol Cell Biol 19:657–670

    PubMed  CAS  Google Scholar 

  • Everts HB, Berdanier CD (2002) Regulation of mitochondrial gene expression by retinoids. IUBMB Life 54:45–49

    Article  PubMed  CAS  Google Scholar 

  • Ezawa I, Yamamoto M, Kimura S, Ogata E (1984) Alterations of oxidative phosphorylation reactions in mitochondria isolated from hypothyroid rat liver. Eur J Biochem 141:9–13

    Article  PubMed  CAS  Google Scholar 

  • Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31:289–294

    Article  PubMed  CAS  Google Scholar 

  • Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, Macgregor GR, Wallace DC (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962

    Article  PubMed  CAS  Google Scholar 

  • Fisher RP, Topper JN, Clayton DA (1987) Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50:247–258

    Article  PubMed  CAS  Google Scholar 

  • Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill ME (2009) Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res 37:3153–3164

    Article  PubMed  CAS  Google Scholar 

  • Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN (2003) Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14:1583–1596

    Article  PubMed  CAS  Google Scholar 

  • Garstka HL, Facke M, Escribano JR, Wiesner RJ (1994) Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun 200:619–626

    Article  PubMed  CAS  Google Scholar 

  • Gelfand R, Attardi G (1981) Synthesis and turnover of mitochondrial ribonucleic acid in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol Cell Biol 1:497–511

    PubMed  CAS  Google Scholar 

  • Gilkerson RW, Schon EA, Hernandez E, Davidson MM (2008) Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation. J Cell Biol 181:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  PubMed  CAS  Google Scholar 

  • Gohil VM, Nilsson R, Belcher-Timme CA, Luo B, Root DE, Mootha VK (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem 285: 13742–13747

    Google Scholar 

  • Hyvarinen AK, Pohjoismaki JL, Reyes A, Wanrooij S, Yasukawa T, Karhunen PJ, Spelbrink JN, Holt IJ, Jacobs HT (2007) The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nucleic Acids Res 35:6458–6474

    Article  PubMed  Google Scholar 

  • Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9

    Article  PubMed  Google Scholar 

  • Jacobs HT, Lehtinen SK, Spelbrink JN (2000) No sex please, we're mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. BioEssays 22:564–572

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95

    Article  PubMed  CAS  Google Scholar 

  • Jokinen R, Marttinen P, Sandell HK, Manninen T, Teerenhovi H, Wai T, Teoli D, Loredo-Osti JC, Shoubridge EA, Battersby BJ (2011) Gimap3 regulates tissue-specific mitochondrial DNA segregation. PLoS Genet 6: e1001161

  • Kadowaki T, Kitagawa Y (1988) Enhanced transcription of mitochondrial genes after growth stimulation and glucocorticoid treatment of Reuber hepatoma H-35. FEBS Lett 233:51–56

    Article  PubMed  CAS  Google Scholar 

  • Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, Shoubridge EA (2007) The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18:3225–3236

    Article  PubMed  CAS  Google Scholar 

  • Khogali SS, Mayosi BM, Beattie JM, McKenna WJ, Watkins H, Poulton J (2001) A common mitochondrial DNA variant associated with susceptibility to dilated cardiomyopathy in two different populations. Lancet 357:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  PubMed  CAS  Google Scholar 

  • Lin YW, Lien LM, Yeh TS, Wu HM, Liu YL, Hsieh RH (2008) 9-cis retinoic acid induces retinoid X receptor localized to the mitochondria for mediation of mitochondrial transcription. Biochem Biophys Res Commun 377:351–354

    Article  PubMed  CAS  Google Scholar 

  • Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32:6015–6027

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Cho J, Cesare AJ, Griffith JD, Attardi G (2005) Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell 123:1227–1240

    Article  PubMed  CAS  Google Scholar 

  • Martinez B, Rodrigues TB, Gine E, Kaninda JP, Perez-Castillo A, Santos A (2009) Hypothyroidism decreases the biogenesis in free mitochondria and neuronal oxygen consumption in the cerebral cortex of developing rats. Endocrinology

  • McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol 23:5816–5824

    Article  PubMed  CAS  Google Scholar 

  • McCulloch V, Seidel-Rogol BL, Shadel GS (2002) A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol 22:1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Metodiev MD, Lesko N, Park CB, Camara Y, Shi Y, Wibom R, Hultenby K, Gustafsson CM, Larsson NG (2009) Methylation of 12 S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9:386–397

    Article  PubMed  CAS  Google Scholar 

  • Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A, Dzionek K, Nijtmans LG, Huynen MA, Holt IJ (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res

  • Miyakawa I, Okamuro A, Kinsky S, Visacka K, Tomaska L, Nosek J (2009) Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. Microbiology 155:1558–1568

    Article  PubMed  CAS  Google Scholar 

  • Mootha VK, Lepage P, Miller K, Bunkenborg J, Reich M, Hjerrild M, Delmonte T, Villeneuve A, Sladek R, Xu F et al. (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 100:605–610

    Article  PubMed  CAS  Google Scholar 

  • Morrish F, Buroker NE, Ge M, Ning XH, Lopez-Guisa J, Hockenbery D, Portman MA (2006) Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA. Mitochondrion 6:143–148

    Article  PubMed  CAS  Google Scholar 

  • Moutsatsou P, Psarra AM, Tsiapara A, Paraskevakou H, Davaris P, Sekeris CE (2001) Localization of the glucocorticoid receptor in rat brain mitochondria. Arch Biochem Biophys 386:69–78

    Article  PubMed  CAS  Google Scholar 

  • Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:277–289

    Article  PubMed  CAS  Google Scholar 

  • Ohniwa RL, Morikawa K, Takeshita SL, Kim J, Ohta T, Wada C, Takeyasu K (2007) Transcription-coupled nucleoid architecture in bacteria. Genes Cells 12:1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Asin-Cayuela J, Camara Y, Shi Y, Pellegrini M, Gaspari M, Wibom R, Hultenby K, Erdjument-Bromage H, Tempst P et al. (2007) MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 130:273–285

    Article  PubMed  CAS  Google Scholar 

  • Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 3:e3257

    Article  PubMed  Google Scholar 

  • Pellegrini M, Asin-Cayuela J, Erdjument-Bromage H, Tempst P, Larsson NG, Gustafsson CM (2009) MTERF2 is a nucleoid component in mammalian mitochondria. Biochim Biophys Acta 1787:296–302

    Article  PubMed  CAS  Google Scholar 

  • Pohjoismaki JL, Wanrooij S, Hyvarinen AK, Goffart S, Holt IJ, Spelbrink JN, Jacobs HT (2006) Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res 34:5815–5828

    Article  PubMed  Google Scholar 

  • Poulton J, Brown MS, Cooper A, Marchington DR, Phillips DI (1998) A common mitochondrial DNA variant is associated with insulin resistance in adult life. Diabetologia 41:54–58

    Article  PubMed  CAS  Google Scholar 

  • Rajasimha HK, Chinnery PF, Samuels DC (2008) Selection against pathogenic mtDNA mutations in a stem cell population leads to the loss of the 3243A– > G mutation in blood. Am J Hum Genet 82:333–343

    Article  PubMed  CAS  Google Scholar 

  • Rebelo AP, Williams SL, Moraes CT (2009) In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res

  • Roberti M, Bruni F, Loguercio Polosa P, Manzari C, Gadaleta MN, Cantatore P (2006) MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis. Biochim Biophys Acta 1757:1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Rodeheffer MS, Shadel GS (2003) Multiple interactions involving the amino-terminal domain of yeast mtRNA polymerase determine the efficiency of mitochondrial protein synthesis. J Biol Chem 278:18695–18701

    Article  PubMed  CAS  Google Scholar 

  • Rossmanith W, Karwan RM (1998) Characterization of human mitochondrial RNase P: novel aspects in tRNA processing. Biochem Biophys Res Commun 247:234–241

    Article  PubMed  CAS  Google Scholar 

  • Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, (2010) Shoubridge EA LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21: 1315–1323

    Google Scholar 

  • Scheller K, Sekeris CE, Krohne G, Hock R, Hansen IA, Scheer U (2000) Localization of glucocorticoid hormone receptors in mitochondria of human cells. Eur J Cell Biol 79:299–307

    Article  PubMed  CAS  Google Scholar 

  • Scheller K, Seibel P, Sekeris CE (2003) Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol 222:1–61

    Article  PubMed  Google Scholar 

  • Sciacco M, Bonilla E, Schon EA, DiMauro S, Moraes CT (1994) Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 3:13–19

    Article  PubMed  CAS  Google Scholar 

  • Seidel-Rogol BL, McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33:23–24

    Article  PubMed  CAS  Google Scholar 

  • Shadel GS (2004) Coupling the mitochondrial transcription machinery to human disease. Trends Genet 20:513–519

    Article  PubMed  CAS  Google Scholar 

  • Shen EL, Bogenhagen DF (2001) Developmentally-regulated packaging of mitochondrial DNA by the HMG-box protein mtTFA during Xenopus oogenesis. Nucleic Acids Res 29:2822–2828

    Article  PubMed  CAS  Google Scholar 

  • Short KR, Nygren J, Nair KS (2007) Effect of T(3)-induced hyperthyroidism on mitochondrial and cytoplasmic protein synthesis rates in oxidative and glycolytic tissues in rats. Am J Physiol Endocrinol Metab 292:E642–647

    Article  PubMed  CAS  Google Scholar 

  • Shoubridge EA (2009) Something old, something new, something borrowed. Cell Metab 9:307–308

    Article  PubMed  CAS  Google Scholar 

  • Shutt TE, Lodeiro MF, Cotney J, Cameron CE, Shadel GS (2011) Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci U S A 107: 12133–12138

    Google Scholar 

  • Sondheimer N, Fang JK, Polyak E, Falk MJ, Avadhani NG (2010) Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription. Biochemistry 49: 7467–7473

    Google Scholar 

  • Spahr H, Samuelsson T, Hallberg BM, Gustafsson CM (2010) Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain. Biochem Biophys Res Commun 397: 386–390

    Google Scholar 

  • St John JC, Ramalho-Santos J, Gray HL, Petrosko P, Rawe VY, Navara CS, Simerly CR, Schatten GP (2005) The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7:141–153

    Article  PubMed  CAS  Google Scholar 

  • Sterling K, Brenner MA, Sakurada T (1980) Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science 210:340–342

    Article  PubMed  CAS  Google Scholar 

  • Sterling K, Campbell GA, Brenner MA (1984) Purification of the mitochondrial triiodothyronine (T3) receptor from rat liver. Acta Endocrinol (Copenh) 105:391–397

    CAS  Google Scholar 

  • Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6:e10

    Article  PubMed  Google Scholar 

  • Suzuki H, Hosokawa Y, Toda H, Nishikimi M, Ozawa T (1990) Common protein-binding sites in the 5'-flanking regions of human genes for cytochrome c1 and ubiquinone-binding protein. J Biol Chem 265:8159–8163

    PubMed  CAS  Google Scholar 

  • Suzuki H, Hosokawa Y, Nishikimi M, Ozawa T (1991) Existence of common homologous elements in the transcriptional regulatory regions of human nuclear genes and mitochondrial gene for the oxidative phosphorylation system. J Biol Chem 266:2333–2338

    PubMed  CAS  Google Scholar 

  • Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91:8739–8746

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Bogenhagen DF (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Cotney J, Shadel GS (2007) Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J Biol Chem 282:12610–12618

    Article  PubMed  CAS  Google Scholar 

  • Wanrooij S, Fuste JM, Farge G, Shi Y, Gustafsson CM, Falkenberg M (2008) Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci USA 105:11122–11127

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Bruck P, Mikes Z, Kupper JH, Klingenspor M, Wiesner RJ (2002) Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology 143:177–184

    Article  PubMed  CAS  Google Scholar 

  • Wenz T, Luca C, Torraco A, Moraes CT (2009) mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab 9:499–511

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1999) Architectural regulations and Hmg1. Nat Genet 22:215–217

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC et al. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  PubMed  CAS  Google Scholar 

  • Yakubovskaya E, Mejia E, Byrnes J, Hambardjieva E, Garcia-Diaz M (2010) Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell Metab 141: 982–993

    Google Scholar 

Download references

Acknowledgements

Our work was supported by PHS grant EY10804, NS041777, CA85700, The Parkinson Disease Foundation, the Florida James & Esther King Biomedical Research Program and the Muscular Dystrophy Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos T. Moraes.

Additional information

Communicated by: John Christodoulou

Competing interest: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebelo, A.P., Dillon, L.M. & Moraes, C.T. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis 34, 941–951 (2011). https://doi.org/10.1007/s10545-011-9330-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9330-8

Keywords

Navigation