Skip to main content

Early initiation of enzyme replacement therapy improves metabolic correction in the brain tissue of aspartylglycosaminuria mice

Abstract

Aspartylglycosaminuria (AGU) is a lysosomal storage disease caused by deficient activity of glycosylasparaginase (AGA), and characterized by motor and mental retardation. Enzyme replacement therapy (ERT) in adult AGU mice with AGA removes the accumulating substance aspartylglucosamine from and reverses pathology in many somatic tissues, but has only limited efficacy in the brain tissue of the animals. In the current work, ERT of AGU mice was initiated at the age of 1 week with three different dosage schedules of recombinant glycosylasparaginase. The animals received either 3.4 U of AGA/kg every second day for 2 weeks (Group 1), 1.7 U/kg every second day for 9 days followed by an enzyme injection once a week for 4 weeks (Group 2) or 17 U/kg at the age of 7 and 9 days (Group 3). In the Group 1 and Group 3 mice, ERT reduced the amount of aspartylglucosamine by 34 and 41% in the brain tissue, respectively. No therapeutic effect was observed in the brain tissue of Group 2 mice. As in the case of adult AGU mice, the AGA therapy was much more effective in the somatic tissues than in the brain tissue of the newborn AGU mice. The combined evidence demonstrates that a high dose ERT with AGA in newborn AGU mice is up to twofold more effective in reducing the amount of the accumulated storage material from the brain tissue than ERT in adult AGU animals, indicating the importance of early detection and treatment of the disease.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AGA:

Glycosylasparaginase

AGU:

Aspartylglycosaminuria

BBB:

Blood–brain barrier

GlcNAc-Asn:

Aspartylglucosamine

CNS:

Central nervous system

ERT:

Enzyme replacement therapy

M-6-P:

Mannose-6-phosphate

MSP:

Mucopolysaccharidosis

Reference

  • Arvio M, Autio S, Mononen T (1997) Clinical manifestations of aspartylglycosaminuria. In: Mononen I, Aronson NN (eds) Lysosomal storage disease: aspartylglycosaminuria. R.G.Landes/Springer, Austin, pp 19–28

    Google Scholar 

  • Aula P, Jalanko A, Peltonen L (2001) Aspartylglucosaminuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease I–VII. McGraw-Hill, New York, pp 3535–3550

    Google Scholar 

  • Barton NW, Brady RO, Dambrosia JM et al (1991) Replacement therapy for inherited enzyme deficiency–macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 324:1464–1470

    CAS  Article  PubMed  Google Scholar 

  • Bielicki J, Crawley AC, Davey RC, Varnai JC, Hopwood JJ (1999) Advantages of using same species enzyme for replacement therapy in a feline model of mucopolysaccharidosis type VI. J Biol Chem 274:36335–36343

    CAS  Article  PubMed  Google Scholar 

  • Bijvoet AG, Van HH, Kroos MA et al (1999) Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Hum Mol Genet 8:2145–2153

    CAS  Article  PubMed  Google Scholar 

  • Blanz J, Stroobants S, Lullmann-Rauch R et al (2008) Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in alpha-mannosidosis mice. Hum Mol Genet 17:3437–3445

    CAS  Article  PubMed  Google Scholar 

  • Bou-Gharios G, Abraham D, Olsen I (1993) Lysosomal storage diseases: mechanisms of enzyme replacement therapy. Histochem J 25:593–605

    CAS  Article  PubMed  Google Scholar 

  • Brooks DA, Kakavanos R, Hopwood JJ (2003) Significance of immune response to enzyme-replacement therapy for patients with a lysosomal storage disorder. Trends Mol Med 9:450–453

    CAS  Article  PubMed  Google Scholar 

  • Byers S, Crawley AC, Brumfield LK, Nuttall JD, Hopwood JJ (2000) Enzyme replacement therapy in a feline model of MPS VI: modification of enzyme structure and dose frequency. Pediatr Res 47:743–749

    CAS  Article  PubMed  Google Scholar 

  • Crawley AC, Niedzielski KH, Isaac EL, Davey RC, Byers S, Hopwood JJ (1997) Enzyme replacement therapy from birth in a feline model of mucopolysaccharidosis type VI. J Clin Invest 99:651–662

    CAS  Article  PubMed  Google Scholar 

  • Desnick RJ, Brady R, Barranger J et al (2003) Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 138:338–346

    PubMed  Google Scholar 

  • Dunder U, Kaartinen V, Valtonen P et al (2000) Enzyme replacement therapy in a mouse model of aspartylglycosaminuria. FASEB J 14:361–367

    CAS  PubMed  Google Scholar 

  • Grabowski GA, Barton NW, Pastores G et al (1995) Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 122:33–39

    CAS  PubMed  Google Scholar 

  • Grubb JH, Vogler C, Levy B, Galvin N, Tan Y, Sly WS (2008) Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 105:2616–2621

    CAS  Article  PubMed  Google Scholar 

  • Harmatz P, Giugliani R, Schwartz IV et al (2008) Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase. Mol Genet Metab 94:469–475

    CAS  Article  PubMed  Google Scholar 

  • Kaartinen V, Mononen I (1990a) Detection of aspartylglycosaminuria using urine specimens recovered from absorbent filter paper. Clin Chim Acta 191:15–20

    CAS  Article  PubMed  Google Scholar 

  • Kaartinen V, Mononen I (1990b) Assay of aspartylglycosylaminase by high-performance liquid chromatography. Anal Biochem 190:98–101

    CAS  Article  PubMed  Google Scholar 

  • Kaartinen V, Williams JC, Tomich J, Yates JR III, Hood LE, Mononen I (1991) Glycosaparaginase from human leukocytes. Inactivation and covalent modification with diazo-oxonorvaline. J Biol Chem 266:5860–5869

    CAS  PubMed  Google Scholar 

  • Kaartinen V, Mononen I, Voncken JW, Noronkoski T, Gonzalez-Gomez I, Heisterkamp N, Groffen J (1996) A mouse model for the human lysosomal disease aspartylglycosaminuria. Nat Med 2:1375–1378

    CAS  Article  PubMed  Google Scholar 

  • Kakavanos R, Turner CT, Hopwood JJ, Kakkis ED, Brooks DA (2003) Immune tolerance after long-term enzyme-replacement therapy among patients who have mucopolysaccharidosis I. Lancet 361:1608–1613

    CAS  Article  PubMed  Google Scholar 

  • Kakkis ED, McEntee MF, Schmidtchen A et al (1996) Long-term and high-dose trials of enzyme replacement therapy in the canine model of mucopolysaccharidosis I. Biochem Mol Med 58:156–167

    CAS  Article  PubMed  Google Scholar 

  • Katzin LW, Amato AA (2008) Pompe disease: a review of the current diagnosis and treatment recommendations in the era of enzyme replacement therapy. J Clin Neuromuscul Dis 9:421–431

    Article  PubMed  Google Scholar 

  • Kelo E, Dunder U, Mononen I (2005) Massive accumulation of Man2GlcNAc2-Asn in nonneuronal tissues of glycosylasparaginase-deficient mice and its removal by enzyme replacement therapy. Glycobiology 15:79–85

    CAS  Article  PubMed  Google Scholar 

  • Lidove O, Joly D, Barbey F et al (2007) Clinical results of enzyme replacement therapy in Fabry disease: a comprehensive review of literature. Int J Clin Pract 61:293–302

    CAS  Article  PubMed  Google Scholar 

  • Matzner U, Herbst E, Hedayati KK et al (2005) Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 14:1139–1152

    CAS  Article  PubMed  Google Scholar 

  • Matzner U, Lullmann-Rauch R, Stroobants S et al (2009) Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther 17:600–606

    CAS  Article  PubMed  Google Scholar 

  • Mononen I, Aronson NN Jr (1997) Lysosomal storage disease: aspartylglycosaminuria. R.G.Landes/Springer, Austin

    Google Scholar 

  • Mononen IT, Kaartinen VM, Williams JC (1993) A fluorometric assay for glycosylasparaginase activity and detection of aspartylglycosaminuria. Anal Biochem 208:372–374

    CAS  Article  PubMed  Google Scholar 

  • Mononen I, Heisterkamp N, Dunder U, Romppanen EL, Noronkoski T, Kuronen I, Groffen J (1995) Recombinant glycosylasparaginase and in vitro correction of aspartylglycosaminuria. FASEB J 9:428–433

    CAS  PubMed  Google Scholar 

  • Porto C, Cardone M, Fontana F et al (2009) The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts. Mol Ther 17:964–971

    CAS  Article  PubMed  Google Scholar 

  • Roces DP, Lullmann-Rauch R et al (2004) Efficacy of enzyme replacement therapy in alpha-mannosidosis mice: a preclinical animal study. Hum Mol Genet 13:1979–1988

    CAS  Article  PubMed  Google Scholar 

  • Shull RM, Kakkis ED, McEntee MF, Kania SA, Jonas AJ, Neufeld EF (1994) Enzyme replacement in a canine model of Hurler syndrome. Proc Natl Acad Sci USA 91:12937–12941

    CAS  Article  PubMed  Google Scholar 

  • Sifuentes M, Doroshow R, Hoft R et al (2007) A follow-up study of MPS I patients treated with laronidase enzyme replacement therapy for 6 years. Mol Genet Metab 90:171–180

    CAS  Article  PubMed  Google Scholar 

  • Sly WS (2000) The missing link in lysosomal enzyme targeting. J Clin Invest 105:563–564

    CAS  Article  PubMed  Google Scholar 

  • Stewart K, Brown OA, Morelli AE et al (1997) Uptake of alpha-(L)-iduronidase produced by retrovirally transduced fibroblasts into neuronal and glial cells in vitro. Gene Ther 4:63–75

    CAS  Article  PubMed  Google Scholar 

  • Turner CT, Hopwood JJ, Brooks DA (2000) Enzyme replacement therapy in mucopolysaccharidosis I: altered distribution and targeting of alpha-L-iduronidase in immunized rats. Mol Genet Metab 69:277–285

    CAS  Article  PubMed  Google Scholar 

  • Urayama A, Grubb JH, Sly WS, Banks WA (2004) Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc Natl Acad Sci USA 101:12658–12663

    CAS  Article  PubMed  Google Scholar 

  • Urayama A, Grubb JH, Sly WS, Banks WA (2008) Mannose 6-phosphate receptor-mediated transport of sulfamidase across the blood-brain barrier in the newborn mouse. Mol Ther 16:1261–1266

    CAS  Article  PubMed  Google Scholar 

  • Vogler C, Sands MS, Levy B, Galvin N, Birkenmeier EH, Sly WS (1996) Enzyme replacement with recombinant beta-glucuronidase in murine mucopolysaccharidosis type VII: impact of therapy during the first six weeks of life on subsequent lysosomal storage, growth, and survival. Pediatr Res 39:1050–1054

    CAS  Article  PubMed  Google Scholar 

  • Vogler C, Levy B, Grubb JH et al (2005) Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA 102:14777–14782

    CAS  Article  PubMed  Google Scholar 

  • Wang D, Bonten EJ, Yogalingam G, Mann L, d'Azzo A (2005) Short-term, high dose enzyme replacement therapy in sialidosis mice. Mol Genet Metab 85:181–189

    CAS  Article  PubMed  Google Scholar 

  • Wraith JE (2008) Enzyme replacement therapy with idursulfase in patients with mucopolysaccharidosis type II. Acta Paediatr Suppl 97:76–78

    Article  PubMed  Google Scholar 

  • Wraith JE, Clarke LA, Beck M et al (2004) Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J Pediatr 144:581–588

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from The Sigrid Juselius Foundation (I.M.), the Pediatric Research Foundation (Ulla Hjelt Fund) (I.M.), and Kuopio University Hospital (EVO grant #5100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkka Mononen.

Additional information

Communicated by: Olaf Bodamer

References to electronic databases: Aspartylglucosaminuria: OMIM #208400; Glycosylasparaginase: EC 3.5.1.26

Competing interests: None declared.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunder, U., Valtonen, P., Kelo, E. et al. Early initiation of enzyme replacement therapy improves metabolic correction in the brain tissue of aspartylglycosaminuria mice. J Inherit Metab Dis 33, 611–617 (2010). https://doi.org/10.1007/s10545-010-9158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9158-7

Keywords

  • Enzyme Replacement Therapy
  • Fabry Disease
  • Somatic Tissue
  • Lysosomal Storage Disease
  • Enzyme Dose