Large neutral amino acids supplementation in phenylketonuric patients



Phenylketonuria is an inborn error of amino acid metabolism that results in severe mental retardation if not treated early and appropriately. The traditional treatment, consisting of a low-phenylalanine diet, is usually difficult to maintain throughout adolescence and adulthood, resulting in undesirable levels of blood phenylalanine and consequent neurotoxicity. The neurotoxicity of phenylalanine is enhanced by its transport mechanism across the blood-brain barrier, which has the highest affinity for phenylalanine compared with the other large neutral amino acids that share the same carrier. The supplementation of large neutral amino acids in phenylketonuric patients has been showing interesting results. Plasma phenylalanine levels can be reduced, which may guarantee important metabolic and clinical benefits to these patients. Although long-term studies are needed to determine the efficacy and safety of large neutral amino acids supplements, the present state of knowledge seems to recommend their prescription to all phenylketonuric adult patients who are non-compliant with the low-phenylalanine diet.



blood-brain barrier




large neutral amino acids


phenylalanine hydroxylase






  1. Berger V, Larondelle Y, Trouet A, Schneider YJ (2000) Transport mechanisms of the large neutral amino acid L-phenylalanine in the human intestinal epithelial caco-2 cell line. J Nutr 130: 2780–2788PubMedGoogle Scholar
  2. Berry HK, Bofinger MK, Hunt MM, Phillips PJ, Guilfoile MB (1982) Reduction of cerebrospinal fluid phenylalanine after oral administration of valine, isoleucine, and leucine. Pediatr Res 16: 751–755. doi:10.1203/00006450-198209000-00009 PubMedCrossRefGoogle Scholar
  3. Bickel H, Gerrard J, Hickmans EM (1953) Influence of phenylalanine intake on phenylketonuria. Lancet 262: 812–813. doi:10.1016/S0140-6736(53)90473-5 CrossRefGoogle Scholar
  4. Binek-Singer P, Johnson TC (1982) The effects of chronic hyperphenylalaninaemia on mouse brain protein synthesis can be prevented by other amino acids. Biochem J 206: 407–414PubMedGoogle Scholar
  5. Blows WT (2000) Neurotransmitters of the brain: serotonin, noradrenaline (norepinephrine), and dopamine. J Neurosci Nurs 32: 234–238PubMedGoogle Scholar
  6. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677. doi:10.1083/jcb.40.3.648 PubMedCrossRefGoogle Scholar
  7. Broer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88: 249–286. doi:10.1152/physrev.00018.2006 PubMedCrossRefGoogle Scholar
  8. Brumm VL, Azen C, Moats RA, et al (2004) Neuropsychological outcome of subjects participating in the PKU adult collaborative study: a preliminary review. J Inherit Metab Dis 27: 549–566. doi:10.1023/B:BOLI.0000042985.02049.ff PubMedCrossRefGoogle Scholar
  9. Burgard P, Rey F, Rupp A, Abadie V, Rey J (1997) Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatr Res 41: 368–374. doi:10.1203/00006450-199703000-00011 PubMedCrossRefGoogle Scholar
  10. Burlina A, Blau N (2009) Effect of BH(4) supplementation on phenylalanine tolerance. J Inherit Metab Dis 32: 40–45. doi:10.1007/s10545-008-0947-1 PubMedCrossRefGoogle Scholar
  11. Burlina AB, Bonafe L, Ferrari V, Suppiej A, Zacchello F, Burlina AP (2000) Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. J Inherit Metab Dis 23: 313–316. doi:10.1023/A:1005694122277 PubMedCrossRefGoogle Scholar
  12. Centerwall SA, Centerwall WR (2000) The discovery of phenylketonuria: the story of a young couple, two retarded children, and a scientist. Pediatrics 105: 89–103. doi:10.1542/peds.105.1.89 PubMedCrossRefGoogle Scholar
  13. Christensen HN (1953) Metabolism of amino acids and proteins. Annu Rev Biochem 22: 233–260. doi:10.1146/ PubMedCrossRefGoogle Scholar
  14. del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of l-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35: 161–174. doi:10.1016/j.ejps.2008.06.015 PubMedCrossRefGoogle Scholar
  15. Dotremont H, Francois B, Diels M, Gillis P (1995) Nutritional value of essential amino acids in the treatment of adults with phenylketonuria. J Inherit Metab Dis 18: 127–130. doi:10.1007/BF00711746 PubMedCrossRefGoogle Scholar
  16. Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids.Science 178: 414–416. doi:10.1126/science.178.4059.414 PubMedCrossRefGoogle Scholar
  17. Finkelson L, Bailey I, Waisbren SE (2001) PKU adults and their return to diet: predicting diet continuation and maintenance. J Inherit Metab Dis 24: 515–516. doi:10.1023/A:1010546000617 PubMedCrossRefGoogle Scholar
  18. Fisch RO, Chang PN, Weisberg S, Guldberg P, Guttler F, Tsai MY (1995) Phenylketonuric patients decades after diet. J Inherit Metab Dis 18: 347–353. doi:10.1007/BF00710427 PubMedCrossRefGoogle Scholar
  19. Griffiths P, Paterson L, Harvie A (1995) Neuropsychological effects of subsequent exposure to phenylalanine in adolescents and young adults with early-treated phenylketonuria. J Intellect Disabil Res 39(Pt 5): 365–372PubMedCrossRefGoogle Scholar
  20. Guttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherit Metab Dis 9(Supplement 2): 169–177. doi:10.1007/BF01799701 PubMedCrossRefGoogle Scholar
  21. Hanley WB (2004) Adult phenylketonuria. Am J Med 117: 590–595. doi:10.1016/j.amjmed.2004.03.042 PubMedCrossRefGoogle Scholar
  22. Hawkins RA, O’Kane RL, Simpson IA, Vina JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136: 218S–226SPubMedGoogle Scholar
  23. Hidalgo IJ, Borchardt RT (1990) Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2. Biochim Biophys Acta 1028: 25–30. doi:10.1016/0005-2736(90)90261-L PubMedCrossRefGoogle Scholar
  24. Hoeksma M, Reijngoud DJ, Pruim J, de Valk HW, Paans AM, van Spronsen FJ (2009) Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metab 96(4): 177–182. Epub 2009 Feb 6PubMedCrossRefGoogle Scholar
  25. Huether G, Neuhoff V, Kaus R (1983) Brain development in experimental hyperphenylalaninaemia: disturbed proliferation and reduced cell numbers in the cerebellum. Neuropediatrics 14: 12–19. doi:10.1055/s-2008-1059547 PubMedCrossRefGoogle Scholar
  26. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273: 23629–23632. doi:10.1074/jbc.273.37.23629 PubMedCrossRefGoogle Scholar
  27. Karasov W, Solberg D, Carter S, et al (1986) Uptake pathways for amino acids in mouse intestine. Am J Physiol 251: G501–508PubMedGoogle Scholar
  28. Knudsen GM, Hasselbalch S, Toft PB, Christensen E, Paulson OB, Lou H (1995) Blood-brain barrier transport of amino acids in healthy controls and in patients with phenylketonuria. J Inherit Metab Dis 18: 653–664. doi:10.1007/BF02436753 PubMedCrossRefGoogle Scholar
  29. Koch R, Guttler F (2000) Benefits of mutation analysis and examination of brain phenylalanine levels in the management of phenylketonuria. Pediatrics 106: 1136. doi:10.1542/peds.106.5.1136 PubMedCrossRefGoogle Scholar
  30. Koch R, Moats R, Guttler F, Guldberg P, Nelson M Jr (2000) Blood-brain phenylalanine relationships in persons with phenylketonuria. Pediatrics 106: 1093–1096. doi:10.1542/peds.106.5.1093 PubMedCrossRefGoogle Scholar
  31. Koch R, Moseley KD, Yano S, Nelson M Jr, Moats RA (2003) Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment. Mol Genet Metab 79: 110–113. doi:10.1016/S1096-7192(03)00078-7 PubMedCrossRefGoogle Scholar
  32. Kreis R, Pietz J, Penzien J, Herschkowitz N, Boesch C (1995) Identification and quantitation of phenylalanine in the brain of patients with phenylketonuria by means of localized in vivo 1H magnetic-resonance spectroscopy. J Magn Reson B 107: 242–251. doi:10.1006/jmrb.1995.1084 PubMedCrossRefGoogle Scholar
  33. Kure S, Hou DC, Ohura T, et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135: 375–378. doi:10.1016/S0022-3476(99)70138-1 PubMedCrossRefGoogle Scholar
  34. Lee P, Treacy EP, Crombez E, et al (2008) Safety and efficacy of 22 weeks of treatment with sapropterin dihydrochloride in patients with phenylketonuria. Am J Med Genet A 146A: 2851–2859. doi:10.1002/ajmg.a.32562 PubMedCrossRefGoogle Scholar
  35. Levy H, Burton B, Cederbaum S, Scriver C (2007) Recommendations for evaluation of responsiveness to tetrahydrobiopterin (BH4) in phenylketonuria and its use in treatment. Mol Genet Metab 92: 287–291. doi:10.1016/j.ymgme.2007.09.017 PubMedCrossRefGoogle Scholar
  36. Lou HC, Toft PB, Andresen J, et al (1994) Unchanged MRI of myelin in adolescents with PKU supplied with non-phe essential amino acids after dietary relaxation. Acta Paediatr 83: 1312–1314. doi:10.1111/j.1651-2227.1994.tb13025.x PubMedCrossRefGoogle Scholar
  37. Mastroberardino L, Spindler B, Pfeiffer R, et al (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395: 288–291. doi:10.1038/26246 PubMedCrossRefGoogle Scholar
  38. Matalon KM (2001) Developments in phenylketonuria. Top Clin Nutr 16: 41–50Google Scholar
  39. Matalon R, Michals-Matalon K, Bhatia G, et al (2006) Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis 29: 732–738. doi:10.1007/s10545-006-0395-8 PubMedCrossRefGoogle Scholar
  40. Matalon R, Michals-Matalon K, Bhatia G, et al (2007) Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis 30: 153–158. doi:10.1007/s10545-007-0556-4 PubMedCrossRefGoogle Scholar
  41. McKean CM (1972) The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. Brain Res 47: 469–476. doi:10.1016/0006-8993(72)90653-1 PubMedCrossRefGoogle Scholar
  42. McKean CM, Boggs DE, Peterson NA (1968) The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain. J Neurochem 15: 235–241. doi:10.1111/j.1471-4159.1968.tb06202.x PubMedCrossRefGoogle Scholar
  43. Moats RA, Koch R, Moseley K, et al (2000) Brain phenylalanine concentration in the management of adults with phenylketonuria. J Inherit Metab Dis 23: 7–14. doi:10.1023/A:1005638627604 PubMedCrossRefGoogle Scholar
  44. Moats RA, Moseley KD, Koch R, Nelson M Jr (2003) Brain phenylalanine concentrations in phenylketonuria: research and treatment of adults. Pediatrics 112: 1575–1579PubMedGoogle Scholar
  45. Moller HE, Ullrich K, Weglage J (2000) In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr 159(Supplement 2): S121–125. doi:10.1007/PL00014374 PubMedCrossRefGoogle Scholar
  46. Munck BG, Munck LK (1994) Phenylalanine transport in rabbit small intestine. J Physiol 480(Pt 1): 99–107PubMedGoogle Scholar
  47. Ney DM, Gleason ST, van Calcar SC, et al (2009) Nutritional management of PKU with glycomacropeptide from cheese whey. J Inherit Metab Dis 32: 32–39. doi:10.1007/s10545-008-0952-4 PubMedCrossRefGoogle Scholar
  48. Novotny EJ Jr, Avison MJ, Herschkowitz N, et al (1995) In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy. Pediatr Res 37: 244–249. doi:10.1203/00006450-199502000-00020 PubMedCrossRefGoogle Scholar
  49. O’Kane RL, Hawkins RA (2003) Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am J Physiol Endocrinol Metab 285: E1167–1173PubMedGoogle Scholar
  50. O’Kane RL, Vina JR, Simpson I, Hawkins RA (2004) Na+-dependent neutral amino acid transporters A, ASC, and N of the blood-brain barrier: mechanisms for neutral amino acid removal. Am J Physiol Endocrinol Metab 287: E622–629. doi:10.1152/ajpendo.00187.2004 PubMedCrossRefGoogle Scholar
  51. Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24: 1745–1758. doi:10.1007/s11095-007-9374-5 PubMedCrossRefGoogle Scholar
  52. Pardridge WM (1998) Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23: 635–644. doi:10.1023/A:1022482604276 PubMedCrossRefGoogle Scholar
  53. Pietz J, Kreis R, Boesch C, Penzien J, Rating D, Herschkowitz N (1995) The dynamics of brain concentrations of phenylalanine and its clinical significance in patients with phenylketonuria determined by in vivo 1H magnetic resonance spectroscopy. Pediatr Res 38: 657–663. doi:10.1203/00006450-199511000-00005 PubMedCrossRefGoogle Scholar
  54. Pietz J, Dunckelmann R, Rupp A, et al (1998) Neurological outcome in adult patients with early-treated phenylketonuria. Eur J Pediatr 157: 824–830. doi:10.1007/s004310050945 PubMedCrossRefGoogle Scholar
  55. Pietz J, Kreis R, Rupp A, et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103: 1169–1178. doi:10.1172/JCI5017 PubMedCrossRefGoogle Scholar
  56. Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 11: 1361–1364. doi:10.1097/00001756-200004270-00042 PubMedCrossRefGoogle Scholar
  57. Ris MD, Williams SE, Hunt MM, Berry HK, Leslie N (1994) Early-treated phenylketonuria: adult neuropsychologic outcome. J Pediatr 124: 388–392. doi:10.1016/S0022-3476(94)70360-4 PubMedCrossRefGoogle Scholar
  58. Rocha JC, Vilarinho L, Cabral A, Vaz Osório R, de Almeida MF (2007) Consensus for the nutritional treatment of phenylketonuria. Acta Pediatr Port 38: 44–54Google Scholar
  59. Sanchez del Pino MM, Hawkins RA, Peterson DR (1992) Neutral amino acid transport by the blood-brain barrier. Membrane vesicle studies. J Biol Chem 267: 25951–25957PubMedGoogle Scholar
  60. Sanchez del Pino MM, Peterson DR, Hawkins RA (1995) Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J Biol Chem 270: 14913–14918. doi:10.1074/jbc.270.25.14913 PubMedCrossRefGoogle Scholar
  61. Sarkissian CN, Gámez A, Scriver CR (2009) What we know that could influence future treatment of phenylketonuria. J Inherit Metab Dis 32(1): 3–9. Epub 2008 Aug 3PubMedCrossRefGoogle Scholar
  62. Schindeler S, Ghosh-Jerath S, Thompson S, et al (2007) The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab 91: 48–54. doi:10.1016/j.ymgme.2007.02.002 PubMedCrossRefGoogle Scholar
  63. Schmidt E, Rupp A, Burgard P, Pietz J, Weglage J, de Sonneville L (1994) Sustained attention in adult phenylketonuria: the influence of the concurrent phenylalanine-blood-level. J Clin Exp Neuropsychol 16: 681–688. doi:10.1080/01688639408402681 PubMedCrossRefGoogle Scholar
  64. Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1667–1724Google Scholar
  65. Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130: 1016S–1022SPubMedGoogle Scholar
  66. Stevens BR, Ross HJ, Wright EM (1982) Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J Membr Biol 66: 213–225. doi:10.1007/BF01868496 PubMedCrossRefGoogle Scholar
  67. Surtees R, Blau N (2000) The neurochemistry of phenylketonuria. Eur J Pediatr. 159(Supplement 2): S109–113. doi:10.1007/PL00014370 PubMedCrossRefGoogle Scholar
  68. Thompson AJ, Smith I, Brenton D, et al (1990) Neurological deterioration in young adults with phenylketonuria. Lancet 336: 602–605. doi:10.1016/0140-6736(90)93401-A PubMedCrossRefGoogle Scholar
  69. van Calcar SC, MacLeod EL, Gleason ST, et al (2009) Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am J Clin Nutr 89(4): 1068–1077. Epub 2009 Feb 25PubMedCrossRefGoogle Scholar
  70. van Meer G, Simons K (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 5: 1455–1464PubMedGoogle Scholar
  71. van Meer G, Gumbiner B, Simons K (1986) The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 322: 639–641. doi:10.1038/322639a0 PubMedCrossRefGoogle Scholar
  72. van Spronsen FJ, Hoeksma M, Reijngoud DJ (2009) Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis 32: 46–51. doi:10.1007/s10545-008-0946-2 PubMedCrossRefGoogle Scholar
  73. Walter JH, White FJ, Hall SK, et al (2002) How practical are recommendations for dietary control in phenylketonuria? Lancet 360: 55–57. doi:10.1016/S0140-6736(02)09334-0 PubMedCrossRefGoogle Scholar
  74. Walter JH, Lee PJ, Burgard P (2006) Hyperphenylalaninaemia. In Fernandes J, Saudubray J-M, van den Berghe G, Walter JH, eds. Inborn Metabolic Diseases. Heidelberg: Springer, 221–232CrossRefGoogle Scholar
  75. Weglage J, Wiedermann D, Denecke J, et al (2001) Individual blood-brain barrier phenylalanine transport determines clinical outcome in phenylketonuria. Ann Neurol 50: 463–467. doi:10.1002/ana.1226 PubMedCrossRefGoogle Scholar
  76. Weglage J, Wiedermann D, Denecke J, et al (2002) Individual blood-brain barrier phenylalanine transport in siblings with classical phenylketonuria. J Inherit Metab Dis 25: 431–436. doi:10.1023/A:1021234730512 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Center of Medical Genetics Jacinto Magalhães — INSAPortoPortugal
  2. 2.Department of Biochemistry (U38-FCT), Faculty of Medicine of PortoUniversity of PortoPortoPortugal

Personalised recommendations