Journal of Inherited Metabolic Disease

, Volume 31, Issue 6, pp 703–717 | Cite as

The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: A review

Metabolic Dissertation


The recent discovery of two defects (ribose-5-phosphate isomerase deficiency and transaldolase deficiency) in the reversible part of the pentose phosphate pathway (PPP) has stimulated interest in this pathway. In this review we describe the functions of the PPP, its relation to other pathways of carbohydrate metabolism and an overview of the metabolic defects in the reversible part of the PPP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agblevor FA, Murden A, Hames BR (2004) Improved method of analysis of biomass sugars using high-performance liquid chromatography. Biotechnol Lett 26: 1207–1211. doi:10.1023/B:BILE.0000036596.95796.42.PubMedCrossRefGoogle Scholar
  2. Banki K, Halladay D, Perl A (1994) Cloning and expression of the human gene for transaldolase. A novel highly repetitive element constitutes an integral part of the coding sequence. J Biol Chem 269: 2847–2851.PubMedGoogle Scholar
  3. Banki K, Hutter E, Colombo E, Gonchoroff NJ, Perl A (1996) Glutathione levels and sensitivity to apoptosis are regulated by changes in transaldolase expression. J Biol Chem 271: 32994–33001. doi:10.1074/jbc.271.51.32994.PubMedCrossRefGoogle Scholar
  4. Baquer NZ, Hothersall JS, McLean P, Greenbaum AL (1977) Aspects of carbohydrate metabolism in developing brain. Dev Med Child Neurol 19: 81–104.PubMedCrossRefGoogle Scholar
  5. Cappellini MD, Fiorelli G (2008) Glucose-6-phosphate dehydrogenase deficiency. Lancet 371: 64–74. doi:10.1016/S0140-6736(08)60073-2.PubMedCrossRefGoogle Scholar
  6. Chuang DM, Hough C, Senatorov VV (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 45: 269–290. doi:10.1146/annurev.pharmtox.45.120403.095902.PubMedCrossRefGoogle Scholar
  7. Coy JF, Dressler D, Wilde J, Schubert P (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab 51: 257–273.PubMedGoogle Scholar
  8. Dastoor Z, Dreyer JL (2005) Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci 114(Pt 9): 1643–1653.Google Scholar
  9. Du X, Matsumura T, Edelstein D, et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112: 1049–1057.PubMedGoogle Scholar
  10. Fung CW, Siu S, Mak C, et al (2007) A rare cause of hepatosplenomegaly-Transaldolase deficiency. J Inherit Metab Dis 30(Supplement 1): 62.Google Scholar
  11. Graille M, Meyer P, Leulliot N, et al (2005) Crystal structure of the S. cerevisiae d-ribose-5-phosphate isomerase: comparison with the archaeal and bacterial enzymes. Biochimie 87: 763–769. doi:10.1016/j.biochi.2005.03.001.PubMedCrossRefGoogle Scholar
  12. Grossman CE, Niland B, Stancato C, et al (2004) Deletion of Ser-171 causes inactivation, proteasome-mediated degradation and complete deficiency of human transaldolase. Biochem J 382: 725–731. doi:10.1042/BJ20040413.PubMedCrossRefGoogle Scholar
  13. Gumaa KA, MacLeod RM, McLean P (1969) The pentose phosphate pathway of glucose metabolism. Influence of a growth-hormone-secreting pituitary tumour on the oxidative and non-oxidative reactions of the cycle in liver. Biochem J 113: 215–220.PubMedGoogle Scholar
  14. Gupte SA, Okada T, McMurtry IF, Oka M (2006) Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction. Pulm Pharmacol Ther 19: 303–309. doi:10.1016/j.pupt.2005.08.002.PubMedCrossRefGoogle Scholar
  15. Haga H, Nakajima T (1989) Determination of polyol profiles in human urine by capillary gas chromatography. Biomed Chromatogr 3: 68–71. doi:10.1002/bmc.1130030206.PubMedCrossRefGoogle Scholar
  16. Hiatt HH (2001) Pentosuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 1589–1599.Google Scholar
  17. Hofer HW (1974) Separation of glycolytic metabolites by column chromatography. Anal Biochem 61: 54–61. doi:10.1016/0003-2697(74)90332-7.PubMedCrossRefGoogle Scholar
  18. Huck JH, Struys EA, Verhoeven NM, Jakobs C, van der Knaap MS (2003) Profiling of pentose phosphate pathway intermediates in blood spots by tandem mass spectrometry: application to transaldolase deficiency. Clin Chem 49: 1375–1380. doi:10.1373/49.8.1375.PubMedCrossRefGoogle Scholar
  19. Huck JHJ, Verhoeven NM, Struys EA, Salomons GS, Jakobs C, van der Knaap MS (2004) Ribose-5-phosphate isomerase deficiency: New inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet 74: 745–751. doi:10.1086/383204.PubMedCrossRefGoogle Scholar
  20. Jain M, Cui L, Brenner DA, Wang B, et al (2004) Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 109: 898–903. doi:10.1161/01.CIR.0000112605.43318.CA.PubMedCrossRefGoogle Scholar
  21. Jandera P, Churácek J (1974) Ion-exchange chromatography of nitrogen compounds. J Chromatogr 98: 1–54. doi:10.1016/S0021-9673(00)84780-9.PubMedCrossRefGoogle Scholar
  22. Janero DR, Hreniuk D, Sharif HM (1994) Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. Am J Physiol 266: C179–188.PubMedGoogle Scholar
  23. Jansen G, Muskiet FA, Schierbeek H, Berger R, van der Slik SW (1986) Capillary gas chromatographic profiling of urinary, plasma and erythrocyte sugars and polyols as their trimethylsilyl derivatives, preceded by a simple and rapid pre-purification method. Clin Chim Acta 157: 277–293. doi:10.1016/0009-8981(86)90303-7.PubMedCrossRefGoogle Scholar
  24. Jauniaux E, Hempstock J, Teng C, Battaglia FC, Burton GJ (2005) Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab 90: 1171–1175. doi:10.1210/jc.2004-1513.PubMedCrossRefGoogle Scholar
  25. Jensen UG, Brandt NJ, Christensen E, Skovby F, Nørgaard-Pedersen B, Simonsen H (2001) Neonatal screening for galactosemia by quantitative analysis of hexose monophosphates using tandem mass spectrometry: a retrospective study. Clin Chem 47: 1364–1372.PubMedGoogle Scholar
  26. Kauffman FC, Brown JG, Passonneau JV, Lowry OH (1969) Effects of changes in brain metabolism on levels of pentose phosphate pathway intermediates. J Biol Chem 244: 3647–3653.PubMedGoogle Scholar
  27. Kletzien RF, Harris PK, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 8: 174–181.PubMedGoogle Scholar
  28. Laker MF (1980) Estimation of neutral sugars and sugar alcohols in biological fluids by gas–liquid chromatography. J Chromatogr 184: 457–470. doi:10.1016/S0021-9673(00)93874-3.PubMedCrossRefGoogle Scholar
  29. Langbein S, Zerilli M, Zur Hausen A, et al (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94: 578–585. doi:10.1038/sj.bjc.6602962.PubMedCrossRefGoogle Scholar
  30. Le Goffe C, Vallette G, Charrier L, et al (2002) Metabolic control of resistance of human epithelial cells to H2O2 and NO stresses. Biochem J 364: 349–359. doi:10.1042/BJ20011856.PubMedCrossRefGoogle Scholar
  31. Luzzatto L (1987) Glucose 6-phosphate dehydrogenase: genetic and haematological aspects. Cell Biochem Funct 5: 101–107. doi:10.1002/cbf.290050204.PubMedCrossRefGoogle Scholar
  32. Newman SF, Sultana R, Perluigi M, et al (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85: 1506–1514. doi:10.1002/jnr.21275.PubMedCrossRefGoogle Scholar
  33. Onkenhout W, Groener JE, Verhoeven NM, Yin C, Laan LA (2002) l-Arabinosuria: a new defect in human pentose metabolism. Mol Genet Metab 77: 80–85. doi:10.1016/S1096-7192(02)00125-7.PubMedCrossRefGoogle Scholar
  34. Perl A, Qian Y, Chohan KR, et al (2006) Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa. Proc Natl Acad Sci U S A 103: 14813–14818. doi:10.1073/pnas.0602678103.PubMedCrossRefGoogle Scholar
  35. Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides–small molecules with a multitude of functions. Biochem J 402: 205–218. doi:10.1042/BJ20061638.PubMedCrossRefGoogle Scholar
  36. Qian Y, Banerjee S, Grossman CE, et al (2008) Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homeostasis, and apoptosis signal processing. Biochem J 415: 123–134.PubMedCrossRefGoogle Scholar
  37. Ralser M, Wamelink MM, Kowald A, et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6: 10. doi:10.1186/jbiol61.PubMedCrossRefGoogle Scholar
  38. Ramos-Montoya A, Lee WN, Bassilian S, et al (2006) Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int J Cancer 119: 2733–2741. doi:10.1002/ijc.22227.PubMedCrossRefGoogle Scholar
  39. Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374: 513–519. doi:10.1042/BJ20030414.PubMedCrossRefGoogle Scholar
  40. Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem 277: 16853–16859. doi:10.1074/jbc.M200559200.PubMedCrossRefGoogle Scholar
  41. Smits HP, Cohen A, Buttler T, Nielsen J, Olsson L (1998) Cleanup and analysis of sugar phosphates in biological extracts by using solid-phase extraction and anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 261: 36–42. doi:10.1006/abio.1998.2714.PubMedCrossRefGoogle Scholar
  42. Swezey RR (1995) High-performance liquid chromatographic system for separating sugar phosphates and other intermediary metabolites. J Chromatogr B Biomed Appl 669: 171–176. doi:10.1016/0378-4347(95)00117-2.PubMedCrossRefGoogle Scholar
  43. Thorell S, Gergely P Jr, Banki K, Perl A, Schneider G (2000) The three-dimensional structure of human transaldolase. FEBS Lett 475: 205–208. doi:10.1016/S0014-5793(00)01658-6.PubMedCrossRefGoogle Scholar
  44. Touchman JW, Anikster Y, Dietrich NL, et al (2000) The genomic region encompassing the nephropathic cystinosis gene (CTNS): complete sequencing of a 200-kb segment and discovery of a novel gene within the common cystinosis-causing deletion. Genome Res 10: 165–173. doi:10.1101/gr.10.2.165 PubMedCrossRefGoogle Scholar
  45. Valayannopoulos V, Verhoeven N, Mention K, et al (2006) Transaldolase deficiency: a new cause of hydrops fetalis and neonatal multi-organ disease. J Pediatr 149: 713–717. doi:10.1016/j.jpeds.2006.08.016.PubMedCrossRefGoogle Scholar
  46. van der Knaap MS, Wevers RA, Struys EA, et al (1999) Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol 46: 925–928. doi:10.1002/1531-8249(199912)46:6<925::AID-ANA18>3.0.CO;2-J.PubMedCrossRefGoogle Scholar
  47. Vas G, Conkrite K, Amidon W, Qian Y, Bánki K, Perl A (2006) Study of transaldolase deficiency in urine samples by capillary LC-MS/MS. J Mass Spectrom 41: 463–469. doi:10.1002/jms.1004.PubMedCrossRefGoogle Scholar
  48. Vatanaviboon P, Varaluksit T, Seeanukun C, Mongkolsuk S (2002) Transaldolase exhibits a protective role against menadione toxicity in Xanthomonas campestris pv. phaseoli. Biochem Biophys Res Commun 297: 968–973. doi:10.1016/S0006-291X(02)02329-X.PubMedCrossRefGoogle Scholar
  49. Verhaar LA Th, Kuster BF (1981) Liquid chromatography of sugars on silica-based stationary phases. J Chromatogr 220: 313–328. doi:10.1016/S0021-9673(00)81928-7.PubMedCrossRefGoogle Scholar
  50. Verhoeven NM, Huck JH, Roos B, et al (2001) Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet 68: 1086–1092. doi:10.1086/320108.PubMedCrossRefGoogle Scholar
  51. Verhoeven NM, Wallot M, Huck JHJ, et al (2005) A newborn with severe liver failure, cardiomyopathy and transaldolase deficiency. J Inherit Metab Dis 28: 169–179. doi:10.1007/s10545-005-5261-6.PubMedCrossRefGoogle Scholar
  52. Wamelink MM, Struys EA, Huck JH, et al (2005a) Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC-MS/MS: application to two new inherited defects of metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 823: 18–25. doi:10.1016/j.jchromb.2005.01.001.PubMedCrossRefGoogle Scholar
  53. Wamelink MM, Smith DE, Jakobs C, Verhoeven NM (2005b) Analysis of polyols in urine by liquid chromatography-tandem mass spectrometry: a useful tool for recognition of inborn errors affecting polyol metabolism. J Inherit Metab Dis 28: 951–963. doi:10.1007/s10545-005-0233-4.PubMedCrossRefGoogle Scholar
  54. Wamelink MM, Smith DEC, Janssen EEW, Verhoeven NM, Struys EA, Jakobs C (2007) Detection of transaldolase deficiency by quantitation of novel seven-carbon chain carbohydrate biomarkers in urine. J Inherit Metab Dis 30: 735–742. doi:10.1007/s10545-007-0590-2.PubMedCrossRefGoogle Scholar
  55. Wamelink MM, Struys EA, Salomons GS, Fowler D, Jakobs C, Clayton PT (2008a) Transaldolase deficiency in a two year-old boy with cirrhosis. Mol Genet Metab 94(2): 255–258.PubMedCrossRefGoogle Scholar
  56. Wamelink MM, Struys EA, Gonzales M, Valayannopoulos V, Saudubray JM, Jakobs C (2008b) Retrospective detection of transaldolase deficiency in amniotic fluid. Prenat Diagn 28: 460–462. doi:10.1002/pd.2002.PubMedCrossRefGoogle Scholar
  57. Wamelink MM, Struys EA, Jansen EE, et al (2008c) Sedoheptulokinase deficiency due to a 57-kb deletion in cystinosis patients causes urinary accumulation of sedoheptulose: elucidation of the CARKL Gene. Hum Mutat 29: 532–536. doi:10.1002/humu.20685.PubMedCrossRefGoogle Scholar
  58. Wolin MS, Ahmad M, Gao Q, Gupte SA (2007) Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing. Antioxid Redox Signal 9: 671–678. doi:10.1089/ars.2007.1559.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Metabolic Unit, Department of Clinical ChemistryVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations