Skip to main content
Log in

Garrod’s Croonian Lectures (1908) and the charter ‘Inborn Errors of Metabolism’: Albinism, alkaptonuria, cystinuria, and pentosuria at age 100 in 2008

  • Review
  • Published:
Journal of Inherited Metabolic Disease

Summary

Garrod presented his concept of ‘the inborn error of metabolism’ in the 1908 Croonian Lectures to the Royal College of Physicians (London); he used albinism, alkaptonuria, cystinuria and pentosuria to illustrate. His lectures are perceived today as landmarks in the history of biochemistry, genetics and medicine. Garrod gave evidence for the dynamic nature of metabolism by showing involvement of normal metabolites in normal pathways made variant by Mendelian inheritance. His concepts and evidence were salient primarily among biochemists, controversial among geneticists because biometricians were dominant over Mendelists, and least salient among physicians who were not attracted to rare hereditary ‘traits’. In 2008, at the centennial of Garrod’s Croonian Lectures, each charter inborn error of metabolism has acquired its own genomic locus, a cloned gene, a repertoire of annotated phenotype-modifying alleles, a gene product with known structure and function, and altered function in the Mendelian variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsberg C, Folin O (1905) Protein metabolism in cystinuria. Am J Physiol 14: 54–72.

    CAS  Google Scholar 

  • Antonarakis SE, Beckmann JS (2006) Mendelian disorders deserve more attention. Nat Rev Genet 7: 277–282.

    PubMed  CAS  Google Scholar 

  • Bateson W, Saunders ER (1901) Report to the Evolution Committee of the Royal Society. Vol. 1, 133–134. London: Royal Society.

    Google Scholar 

  • Beadle GW (1964) Genes and Chemical Reactions in Neospora. Nobel Lectures: Physiology or Medicine. 1942–1962. Amsterdam: Nobel Lectures: Physiology or Medicine, 587–599.

    Google Scholar 

  • Beadle GW, Tatum E (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A 27: 499–506.

    PubMed  CAS  Google Scholar 

  • Bearn AG (1993) Archibald Garrod and the Individuality of Man. Oxford: Clarendon Press.

    Google Scholar 

  • Beltran-Valero de Bernabe D, Granadino B, Chiarelli I, et al (1998) Mutation and polymorphism analysis of the human homogentisate 1,2-dioxygenase gene in alkaptonuria patients. Am J Hum Genet 62: 776–784.

    PubMed  CAS  Google Scholar 

  • Beltran-Valero de Bernabe D, Jimenez FJ, Aquarion R, Rodriguez de Cordoba S (1999) Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutation hotspot in the homogentisate 1,2 dioxygenase gene (HGO). Am J Hum Genet 64: 1316–1322.

    PubMed  CAS  Google Scholar 

  • Benfey PN, Mitchell-Olds T (2008) From genotype to phenotype: systems biology meets natural variation. Science 320: 495–497.

    PubMed  CAS  Google Scholar 

  • Brown BH, Lewis HB (1932) Cystine in normal and cystinuric human blood. Proc Soc Exp Biol Med 36: 488–489.

    Google Scholar 

  • Calonge MJ, Gasparini P, Chillaron J, et al (1994) Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet 6: 420–425.

    PubMed  CAS  Google Scholar 

  • Camargo SM, Bockenhauer D, Kleta R (2008) Aminoacidurias: clinical and molecular aspects. Kidney Int 73: 918–925.

    PubMed  CAS  Google Scholar 

  • Childs B (1970) Sir Archibald Garrod's conception of chemical individuality: A modern appreciation. N Engl J Med 282: 71–77

    Google Scholar 

  • Childs B, Wiener C, Valle D (2005) A science of the individual: implications for a medical school curriculum. Annu Rev Genomics Hum Genet 6: 313–330.

    PubMed  CAS  Google Scholar 

  • Church WS (1909) The influence of heredity on disease etc. A discussion. 2. London, Longmans, Green and Co. Proc Roy Soc Med.

  • Crawhall JC, Purkiss P, Watts RW, Young EP (1969) The excretion of amino acids by cystinuric patients. Ann Hum Genet 33: 149–169.

    PubMed  CAS  Google Scholar 

  • Davenport CB (1916) Heredity of albinism. J Hered 7: 221–223.

    Google Scholar 

  • Davenport GC, Davenport CB (1910) Heredity of skin pigmentation in man. Am Nat 44: 705–731.

    Google Scholar 

  • Dello Strologo L, Pras E, Pontesilli C, et al (2002) Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: A need for a new classification. J Am Soc Nephrol 13: 2547–2553.

    PubMed  Google Scholar 

  • Dent CE, Harris H (1951) Genetics of cystinuria. Ann Eugen 16: 60–87.

    Google Scholar 

  • Dent CE, Rose GA (1951) Amino acid metabolism in cystinuria. Q J Med 20: 205–219.

    PubMed  CAS  Google Scholar 

  • Dent CE, Senior B (1955) Studies on the treatment of cystinuria. Br J Urol 27: 317–332.

    Article  PubMed  CAS  Google Scholar 

  • Dent CE, Senior B, Walshe JM (1954) The pathogenesis of cystinuria. II. Polarographic studies of the metabolism of sulfur-containing amino acids. J Clin Invest 33: 1216–1226.

    PubMed  CAS  Google Scholar 

  • El-Kabbani O, Ishikura S, Darmanin C, et al (2004) Crystal structure of human l-xylulose reductase holo enzyme: Probing the role of asn107 with site-directed mutagenesis. Proteins 55: 724–732.

    PubMed  CAS  Google Scholar 

  • Fernandez-Canon JM, Granadino B, Beltran-Valero de Bernabe D, et al (1996) The molecular basis of alkaptonuria. Nat Genet 14: 19–24.

    PubMed  CAS  Google Scholar 

  • Font-Llitjos M, Jimenez-Vidal M, Bisceglia L, et al (2005) New insights into cystinuria: forty new mutations, genotype–phenotype correlation, and digenic inheritance causing partial phenotype. J Med Genet 42: 58–68.

    PubMed  CAS  Google Scholar 

  • Font MA, Feliubadalo L, Estivill X, et al (2001) Functional analysis of mutations in SLC7A9 and genotype-phenotype correlation in non-type 1 cystinuria. International Cystinuria Consortium. Hum Mol Genet 10: 305–316.

    PubMed  CAS  Google Scholar 

  • Fowler D, Harris H, Warren FL (1952) Plasma-cystine levels in cystinuria. Lancet 1: 544–545.

    Google Scholar 

  • Garrod AE (1899) A contribution to the study of alkaptonuria. Med-Chir Trans 82: 369–394.

    Google Scholar 

  • Garrod AE (1901) About alkaptonuria. Lancet ii: 1484–1486.

    Google Scholar 

  • Garrod AE (1902) The incidence of alkaptonuria. A study in chemical individuality. Lancet 160(4137): 1616–1620.

    Google Scholar 

  • Garrod AE (1908) The Croonian Lectures on Inborn Errors of Metabolism. Delivered before the Royal College of Physicians on June 18th, 23rd, 25th, and 30th, (1908). Lancet 172(4427): 1–7; 172(4428): 73–79; 172(4429): 142–148; 172(4430): 214–230.

    Google Scholar 

  • Garrod AE (1909a) Anomalies of urinary excretion. In: Osler W, ed. Osler’s Modern Medicine. Philadelphia: Lea and Febiger, 71.

    Google Scholar 

  • Garrod AE (1909b) Inborn Errors of Metabolism. Oxford: Oxford University Press.

    Google Scholar 

  • Garrod AE (1923) Inborn Errors of Metabolism. London: Henry Frowde, Hodder and Stoughton.

    Google Scholar 

  • Garrod AE (1931a) The Inborn Factors in Disease: An Essay. [Republished with annotations: Scriver CR, Childs B Oxford University Press. 1989]. Oxford: Clarendon Press.

    Google Scholar 

  • Garrod AE (1931b) The Inborn Factors in Disease: An Essay. Oxford: Clarendon Press.

    Google Scholar 

  • Garrod AE (1996) The incidence of alkaptonuria: a study in chemical individuality (1902) (reprinted). Mol Med 2: 274–282.

    PubMed  CAS  Google Scholar 

  • Garrod AE (2002) The incidence of alkaptonuria: a study in chemical individuality (1902) [classical article]. Yale J Biol Med 75: 221–231.

    PubMed  Google Scholar 

  • Gehrig A, Schmidt SR, Muller CR, Srsen S, Srsnova K, Kress W (1997) Molecular defects in alkaptonuria. Cytogenet Cell Genet 76: 14–16.

    PubMed  CAS  Google Scholar 

  • Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi A-L (2007) The human disease network. Proc Natl Acad Sci U S A 104: 8685–8690.

    PubMed  CAS  Google Scholar 

  • Goicoechea De Jorge Eeal (2002) Alkaptonuria in the Dominican Republic: identification of the founder AKU mutation and further evidence of mutation hotspots in the HGO gene. J Med Genet 39: E40.

    PubMed  CAS  Google Scholar 

  • Granadino D, Beltran-Valero de Bernabe D, Fernandez-Canon JM, Penalva MA, Rodriguez de Cordoba S (1997) The human homogentisate 1,2-dioxygenase (HGO) gene. Genomics 43: 115–122.

    PubMed  CAS  Google Scholar 

  • Greenwald I (1930) The nature of the sugar in four cases of pentosuria, a correction. J Biol Chem 89: 501.

    CAS  Google Scholar 

  • Haffner ME (2006) Adopting orphan drugs – two dozen years of treating rare diseases. N Engl J Med 354: 445–447.

    PubMed  CAS  Google Scholar 

  • Harnevik L, Fjellstedt E, Molbaek A, Denneberg T, Soderkvist P (2003) Mutation analysis of SLC7A9 in cystinuria patients in Sweden. Genet Test 7: 13–20.

    PubMed  CAS  Google Scholar 

  • Harris G, Mittwoch U, Robson EB, Warren FL (1955a) Pattern of amino acid excretion in cystinuria. Ann Hum Genet 19: 196–208.

    PubMed  CAS  Google Scholar 

  • Harris G, Mittwoch U, Robson EB, Warren FL (1955b) Phenotypes and genotypes in cystinuria. Ann Hum Genet 20: 57–91.

    PubMed  CAS  Google Scholar 

  • Harris H (1963) Garrod’s Inborn Errors of Metabolism. Reprinted with a Supplement. London: Oxford University Press. Oxford Monographs on Medical Genetics.

    Google Scholar 

  • Harris H (1970) The Principles of Human Biochemical Genetics. London: North Holland Publishing.

    Google Scholar 

  • Harris H, Warren FL (1953) Quantitative sties on the urinary cystine in patients with cystine-stones and their relatives. Ann Eugen 18: 125–171.

    PubMed  CAS  Google Scholar 

  • Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291: 1001–1004.

    PubMed  CAS  Google Scholar 

  • Hiatt HH (2008) Pentosuria. In: Valle D, et al, eds. New Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill. http://www.ommbid.com.

    Google Scholar 

  • Hogben LT (1931) The genetic analysis of familial traits. J Genet 25: 97–112.

    Google Scholar 

  • Hogben L, Worrall RL, Zieve I (1932) The genetic basis of alkaptonuria. Proc R Soc (Edinburgh) 52: 264–295.

    Google Scholar 

  • Horecker BL, Hiatt HH (1958) Pathways of carbohydrate metabolism. N Engl J Med 258: 225–232.

    PubMed  CAS  Google Scholar 

  • Jaeken J, Martens K, François I, et al (2006) Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome. Am J Hum Genet 78: 38–51.

    PubMed  CAS  Google Scholar 

  • Janocha S, Wolz W, Srsen S, et al (1994) The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics 19: 5–8.

    PubMed  CAS  Google Scholar 

  • Johnson EH, Miller RL (1993) Alkaptonuria in a cynomolgus monkey (Macaca fascicularis). J Med Primatol 22: 428–430.

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27: 65–104.

    PubMed  CAS  Google Scholar 

  • Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97: 639–666.

    PubMed  CAS  Google Scholar 

  • Kacser H, Porteous JW (1987) Control of metabolism: what do we have to measure? Trends Biochem Sci 12: 5–14.

    CAS  Google Scholar 

  • Kamoun P, Coude M, Forest M, Montagutelli X, Guenet J-L (1992) Ascorbic acid and alkaptonuria. Eur J Pediatr 151: 149.

    PubMed  CAS  Google Scholar 

  • Kayser MA, Introne W, Gahl WA (2008) Alkaptonuria. In: Valle D, et al, eds. New Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw Hill. http://www.ommbid.com.

    Google Scholar 

  • King RS, Hearing VJ, Creel DJ, Oetting WS (2008) Albinism. In: Valle D, et al, eds. New Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw Hill. http://www.ommbid.com.

    Google Scholar 

  • Knox WE (1958a) Sir Archibald Garrod’s “Inborn Errors of Metabolism”. III. Albinism. Am J Hum Genet 10: 249–267.

    PubMed  CAS  Google Scholar 

  • Knox WE (1958b) Sir Archibald Garrod’s “Inborn Errors of Metabolism”. IV. Pentosuria. Am J Hum Genet 10: 385–397.

    PubMed  CAS  Google Scholar 

  • Knox WE (1958c) Sir Archibald Garrod’s “Inborn Errors of Metabolism”. I. Cystinuria. Am J Hum Genet 10: 3–32.

    PubMed  CAS  Google Scholar 

  • Knox WE (1958d) Sir Archibald Garrod’s “Inborn Errors of Metabolism”: I. Cystinuria; II. Alkaptonuria; III. Albinism; IV. Pentosuria. Am J Hum Genet 10: 3–32, 95–124, 249–266, 385–397.

    PubMed  CAS  Google Scholar 

  • Knox WE (1966) Cystinuria. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, eds. The Metabolic Basis of Inherited Disease. New York: McGraw Hill, 1262–1282.

    Google Scholar 

  • Knox WE, Edwards SW (1955) Homogentisate oxidase of liver. J Biol Chem 216: 479–487.

    PubMed  CAS  Google Scholar 

  • La Du BN (2001) Alkaptonuria. In: Scriver CR, Beaudet A, Sly SW, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw Hill, 2109–2123.

    Google Scholar 

  • La Du BN, Zannoni VC, Laster L, Seegmiller JE (1958) The nature of the defect in tyrosine metabolism in Alcaptonuria. J Biol Chem 230: 251–260.

    Google Scholar 

  • Lane AB (1985) On the nature of l-xylulose reductase deficiency in essential pentosuria. Biochem Genet 23: 61–72.

    PubMed  CAS  Google Scholar 

  • Lane AB, Jenkins T (1985) Human l-xylulose reductase variation: family and population studies. Ann Hum Genet 49: 227–235.

    PubMed  CAS  Google Scholar 

  • Lasker M (1955) Mortality of persons with xyloketosuria. Hum Biol 27: 294–300.

    PubMed  CAS  Google Scholar 

  • Lasker M, Enklewitz M, Lasker GW (1936) The inheritance of l-xyloketosuria (essential pentosuria). Hum Biol 8: 243–255.

    Google Scholar 

  • Levene PA, La Forge FB (1914) Note on a case of pentosuria. J Biol Chem 18: 319–327.

    CAS  Google Scholar 

  • Lustberg TJ, Schulman JD, Seegmiller JE (1969) Metabolic fate of homogentisic acid-1-14C (HGA) in Alcaptonuria and effectiveness of ascorbic acid in preventing experimental ochronosis. Arthritis Rheum 12: 678.

    Google Scholar 

  • Manning K, Fernandez-Canon JM, Montagutelli X, Grompe M (1999) Identification of the mutation in the alkaptonuria mouse model. Hum Mutat (Mutations in Brief #216, online) 13: 171.

    CAS  Google Scholar 

  • Milch RA (1960) Studies of alcaptonuria: inheritance of 47 cases in eight highly inter-related Dominican kindreds. Am J Hum Genet 12: 76–85.

    PubMed  CAS  Google Scholar 

  • Montagutelli X, Lalouette A, Coude M, Kamoun P, Forest M, Guenet J-L (1994) aku, a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16. Genomics 19: 9–11.

    PubMed  CAS  Google Scholar 

  • Nakagawa J, Ishikura S, Asami J, et al (2002) Molecular characterization of mammalian dicarbonyl/l-xylulose reductase and its localization in kidney. J Biol Chem 277: 17883–17891.

    PubMed  CAS  Google Scholar 

  • Neuberger A, Rimington C, Wilson JMG (1947) Studies on alcaptonuria II. investigations on a case of human alcaptonuria. Biochem J 41: 438–449.

    PubMed  CAS  Google Scholar 

  • O’Brien WM, La Du BN, Bunim JJ (1963) Biochemical, pathological and clinical aspects of alcaptonuria, ochronosis, and ochronotic arthropathy: review of world literature (1584–1962). Am J Med 34: 813–838.

    Google Scholar 

  • Olby R (1974) The Path to the Double Helix. Seattle: University of Washington Press.

    Google Scholar 

  • Oltvai ZN, Barabasi AL (2002) Life’s complexity pyramid. Science 298: 763–764.

    PubMed  CAS  Google Scholar 

  • Osler W (1904) Ochronosis: The pigmentation of cartilages, sclerotics, and skin in alkaptonuria. Lancet 1: 10.

    Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969–1054.

    PubMed  CAS  Google Scholar 

  • Palacin M, Nunes V, Font-Llitjos M, et al (2005) The genetics of heteromeric amino acid transporters. Physiology 20: 112–124.

    PubMed  CAS  Google Scholar 

  • Palacin M, Goodyer P, Nunes V, Gasparini P (2008) Cystinuria. In: Valle D, et al, eds. Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill. http://www.ommbid.com.

    Google Scholar 

  • Patch FS (1934) Cystinuria and cystine lithiasis. Can Med Assoc J 31: 250–255.

    Google Scholar 

  • Pearson K, Nettleship E, Usher CH (1911) A Monograph on Albinism in Man. London, Cambridge University Press. VI, VIII, IX. Parts I, II and IV. Draper’s Company Research Memoirs.

  • Phornphutkul C, Introne WJ, Perry MB, et al (2002) Natural history of alkaptonuria. N Engl J Med 347: 2111–2121.

    PubMed  CAS  Google Scholar 

  • Pollak MR, Chou Y-HW, Cerda JJ, et al (1993) Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nat Genet 5: 201–204.

    PubMed  CAS  Google Scholar 

  • Robson EB, Rose GA (1957) The effect of intravenous lysine on the renal clearance of cystine, arginine, and ornithine in normal subjects, in patients with cystinuria and Fanconi syndrome and in their relatives. Clin Sci 16: 75–93.

    PubMed  CAS  Google Scholar 

  • Rosenberg LE, Durant JL, Holland JM (1965) Intestinal absorption and renal extraction of cystine and cysteine in cystinuria. N Engl J Med 273: 1239–1245.

    PubMed  CAS  Google Scholar 

  • Schmidt SR, Gehrig A, Koehler MR, Schmid M, Muller CR, Kress W (1997) Cloning of the homogentisate 1,2-dioxygenase gene, the key enzyme of alkaptonuria in mouse. Mamm Genome 8: 168–171.

    PubMed  CAS  Google Scholar 

  • Scriver CR (1996) Alkaptonuria: such a long journey. Nat Genet 14: 5–6.

    PubMed  CAS  Google Scholar 

  • Scriver CR (2001) Garrod’s foresight; our hindsight. J Inherit Metab Dis 24: 93–116.

    PubMed  CAS  Google Scholar 

  • Scriver CR (2002) Does hereditary metabolic disease modulate senescence and ageing? J Inherit Metab Dis 25: 235–251.

    PubMed  CAS  Google Scholar 

  • Scriver CR (2004) After the genome – the phenome? J Inherit Metab Dis 27: 305–317.

    PubMed  CAS  Google Scholar 

  • Scriver CR, Tenenhouse HS (1992) Mendelian phenotypes as “probes” of renal transport systems for amino acids and phosphate. In: Windhager EE, ed. Handbook of Physiology. Section 8. Renal Physiology. Oxford: Oxford University Press, 1977–2016.

    Google Scholar 

  • Scriver CR, Waters PJ (1999) Monogenic traits are not simple. Lessons from phenylketonuria. Trends Genet 15: 267–272.

    PubMed  CAS  Google Scholar 

  • Scriver CR, Gregory DM, Sovetts D, Tissenbaum G, Scriver CR (1985) Normal plasma free amino acid values in adults: the influence of some common physiological variables. Metabolism 34: 868–873.

    PubMed  CAS  Google Scholar 

  • Scriver CR, Mahon B, Levy HL, et al (1987) The Hartnup phenotype: Mendelian transport disorder, multifactorial disease. Am J Hum Genet 40: 401–412.

    PubMed  CAS  Google Scholar 

  • Segal S, Thier SO (1995) Cystinuria. In: Scriver CR, Beaudet A, Sly SW, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw Hill, 3581–3601.

    Google Scholar 

  • Simmell O (2001) Lysinuric protein intolerance and other cationic amino acidurias. In: Scriver CR, Beaudet A, Sly SW, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 4933–4956. Updated chapter available at http://genetics.accessmedicine.com.

    Google Scholar 

  • Srsen S, Cisarik F, Pasztor L, Harmecko L (1978) Alkaptonuria in the Trencin district of Czechoslovakia. Am J Med Genet 2: 159–166.

    PubMed  CAS  Google Scholar 

  • Stein WH (1951) Excretion of amino acids in cystinuria. Proc Soc Exp Biol 78: 705–708.

    CAS  Google Scholar 

  • Stenn F, Milgram JW, Lee SL, Weigand RJ, Veis A (1977) Biochemical identification of homogentisic acid pigment in an ochronotic Egyptian mummy. Science 197: 566–568.

    PubMed  CAS  Google Scholar 

  • Suwannarat P, O'Brien K, Perry M, et al (2005) Use of nitisinone in patients with alkaptonuria. Metabolism 54: 719–728.

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Oda K, Yoshikawa Y, Maeda T, Suzuki T (1999) A novel therapeutic trial of homogentisic aciduria in a murine model of alkaptonuria. J Hum Genet 44: 79–84.

    PubMed  CAS  Google Scholar 

  • Titus GP, Mueller HA, Burgner J, Rodriguez de Cordoba S, Penalva MA, Timm DE (2000) Crystal structure of human homogentisate dioxygenase. Nat Struct Biol 7: 542–546.

    PubMed  CAS  Google Scholar 

  • Trevor-Roper PD (1952) Marriage of two complete albinos with normally pigmented offspring. Br J Ophthalmol 36: 107.

    PubMed  CAS  Google Scholar 

  • Wamelink MMC, Jakobs C (2008) Ribose-5-phosphate isomerase deficiency and transaldolase deficiency. In: Valle D, et al, eds. New Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill. http://www.ommbid.com.

    Google Scholar 

  • Wang YM, Van Eys J (1970) The enzymatic defect in essential pentosuria. N Engl J Med 282: 892–896.

    PubMed  CAS  Google Scholar 

  • Wolf CGL, Shaffer PA (1908) Protein metabolism in cystinuria. J Biochem 4: 439–472.

    Google Scholar 

  • Wollaston WH (1810) On cystic oxide, a new species of urinary calculus. Philos Trans R Soc Lond 100: 223–230.

    Google Scholar 

  • Yeh HL, Frankl W, Dunn MS, Parker P, Hughes B, Gyorgy P (1947) The urinary excretion of amino acids by a cystinuric subject. Am J Med Sci 214: 507–512.

    Google Scholar 

  • Zannoni VG, Seegmiller JE, La Du BN (1962) Nature of the defect in alcaptonuria. Nature 193: 952.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Scriver.

Additional information

Communicating editor: Verena Peters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scriver, C.R. Garrod’s Croonian Lectures (1908) and the charter ‘Inborn Errors of Metabolism’: Albinism, alkaptonuria, cystinuria, and pentosuria at age 100 in 2008. J Inherit Metab Dis 31, 580–598 (2008). https://doi.org/10.1007/s10545-008-0984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0984-9

Keywords

Navigation