Skip to main content
Log in

Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate

  • Short Report
  • Published:
Journal of Inherited Metabolic Disease

Summary

Citrin deficiency is a common congenital metabolic defect not only in East Asian populations but also in other populations around the world. It has been shown that although liver transplantation is ultimately required in many patients to prevent neurological decompensation associated with hyperammonaemia, arginine is effective in lowering ammonia in hyperammonaemic patients, and a high-protein low-carbohydrate diet may provide some benefit to infants in improving failure to thrive. In the present study, the clinical symptoms and laboratory findings are reported for a 13-year-old citrin-deficient girl in the early stage of adult-onset type II citrullinaemia (CTLN2), and the therapeutic effect of orally administered arginine and sodium pyruvate was investigated. The patient complained of anorexia, lethargy, fatigue and poor growth, and showed laboratory findings typical of CTLN2; elevated levels of plasma citrulline, threonine-to-serine ratio, and serum pancreatic secretory trypsin inhibitor. Oral administration of arginine and sodium pyruvate for over 3 years improved her clinical symptoms and has almost completely normalized her laboratory findings. It is suggested that the administration of arginine and sodium pyruvate with low-carbohydrate meals may be an effective therapy in patients with citrin deficiency in order either to prolong metabolic normalcy or to provide a safer and more affordable alternative to liver transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

CTLN2:

adult-onset type II citrullinaemia

Na-Pyr:

sodium pyruvate

NICCD:

neonatal intrahepatic cholestasis caused by citrin deficiency

PSTI:

pancreatic secretory trypsin inhibitor

References

  • Awrich AE, Stackhouse WJ, Cantrell JE, et al (1975) Hyperdibasicaminoaciduria, hyperammonemia, and growth retardation: treatment with arginine, lysine, and citrulline. J Pediatr 87: 731–738. doi:10.1016/S0022-3476(75)80296-4.

    Article  PubMed  CAS  Google Scholar 

  • Dimmock D, Kobayashi K, Iijima M, et al (2007) Citrin deficiency: a novel cause of failure to thrive that responds to a high protein, low carbohydrate diet. Pediatrics 119: e773–e777. doi:10.1542/peds.2006-1950.

    Article  PubMed  Google Scholar 

  • Ikeda S, Yazaki M, Takei Y, et al (2001) Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation. J Neurol Neurosurg Psychiatry 71: 663–670. doi:10.1136/jnnp.71.5.663.

    Article  PubMed  CAS  Google Scholar 

  • Imamura Y, Kobayashi K, Shibatou T et al (2003) Effectiveness of carbohydrate-restricted diet and arginine granules therapy for adult-onset type II citrullinemia: a case report of siblings showing homozygous SLC25A13 mutation with and without the disease. Hepatol Res 26: 68–72. doi:10.1016/S1386-6346(02)00331-5.

    Article  PubMed  Google Scholar 

  • Ito K, Murata M (2002) Assessment of child obesity with use of body mass index. Himankenkyu 8: 268–272 [in Japanese].

    Google Scholar 

  • Kobayashi K, Horiuchi M, Saheki T (1997) Pancreatic secretory trypsin inhibitor as a diagnostic marker for adult-onset type II citrullinemia. Hepatology 25: 1160–1165. doi:10.1002/hep.510250519.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Sinasac DS, Iijima M, et al (1999) The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22: 159–163. doi:10.1038/9667.

    Article  PubMed  CAS  Google Scholar 

  • Li MX, Nakajima T, Fukushige T, et al (1999) Aberrations of ammonia metabolism in ornithine carbamoyltransferase-deficient spf-ash mice and their prevention by treatment with urea cycle intermediate amino acids and an ornithine aminotransferase inactivator. Biochim Biophys Acta 1455: 1–11.

    PubMed  CAS  Google Scholar 

  • Moriyama M, Li MX, Kobayashi K, et al (2006) Pyruvate ameliorates the defect in ureogenesis from ammonia in citrin-deficient mice. J Hepatol 44: 930–938. doi:10.1016/j.jhep.2005.09.018.

    Article  PubMed  CAS  Google Scholar 

  • Ohura T, Kobayashi K, Tazawa Y, et al (2007) Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 30: 139–144. doi:10.1007/s10545-007-0506-1.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, et al (2001) Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060–5069. doi:10.1093/emboj/20.18.5060.

    Article  PubMed  CAS  Google Scholar 

  • Saheki T, Kobayashi K (2002) Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 47: 333–341. doi:10.1007/s100380200046.

    Article  PubMed  CAS  Google Scholar 

  • Saheki T, Kobayashi K, Inoue I (1987) Hereditary disorders of the urea cycle in man: biochemical and molecular approaches. Rev Physiol Biochem Pharmacol 108: 21–68. doi:10.1007/BFb0034071.

    Article  PubMed  CAS  Google Scholar 

  • Saheki T, Iijima M, Li MX, et al (2007) Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice recapitulate features of human citrin deficiency. J Biol Chem 282: 25041–25052. doi:10.1074/jbc.M702031200.

    Article  PubMed  CAS  Google Scholar 

  • Saheki T, Kobayashi K, Terashi M, et al (2008) Reduced carbohydrate intake in citrin-deficient subjects. J Inherit Metab Dis 31: 386–394. doi:10.1007/s10545-008-0752-x.

    Article  PubMed  CAS  Google Scholar 

  • Sinasac DS, Moriyama M, Jalil MA, et al (2004) Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia. Mol Cell Biol 24: 527–536. doi:10.1128/MCB.24.2.527-536.2004.

    Article  PubMed  CAS  Google Scholar 

  • Tabata A, Sheng J-S, Ushikai M, et al (2008) Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet 53: 534–545. doi:10.1007/s10038-008-0282-2.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Kagawa T, Kobayashi K, et al (2006) A case of adult-onset type II citrullinemia: deterioration of clinical course after infusion of hyperosmotic and high sugar solutions. Med Sci Monit 12: CS13–CS15.

    PubMed  CAS  Google Scholar 

  • Tamakawa S, Nakamura H, Katano T, et al (1994) Hyperalimentation therapy produces a comatose state in a patient with citrullinemia. J Jpn Soc Intensive Care Med 1: 37–41 [in Japanese].

    Article  Google Scholar 

  • Tanaka M, Nishigaki Y, Fuku N, et al (2007) Therapeutic potential of pyruvate therapy for mitochondrial diseases. Mitochondrion 7: 399–401. doi:10.1016/j.mito.2007.07.002.

    Article  PubMed  CAS  Google Scholar 

  • Waki M, Mutoh K, Murata K, et al (2004) Severe hyperlipidemia in a patient with adult-onset type II citrullinemia, associated with decreased lipoprotein lipase protein and dysgenesis of the corpus callosum. The Lipid 15: 266–270 [in Japanese].

    Google Scholar 

  • Yasuda T, Yamaguchi N, Kobayashi K, et al (2000) Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 107: 537–545. doi:10.1007/s004390000430.

    Article  PubMed  CAS  Google Scholar 

  • Yazaki M, Takei Y, Kobayashi K, et al (2005) Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult-onset type II citrullinemia (CTLN2). Intern Med 44: 188–195. doi:10.2169/internalmedicine.44.188.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr David S. Sinasac, Alberta Children’s Hospital, Calgary, Alberta, Canada and Dr David Dimmock, Baylor College of Medicine, Houston, Texas, USA for useful advice on editing, Daniel Mrozek for reviewing this article, and Ajinomoto Co., Inc., for supplying Na-Pyr. This study was supported in part by Grant-in-Aids for Scientific Research and for Asia-Africa Scientific Platform Program from the Japan Society for the Promotion of Science, a Grant for Child Health and Development from the Ministry of Health, Labor and Welfare of Japan, and a Grant for Research for Promoting Technological Seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saheki.

Additional information

Communicating editor: Ertan Mayatepek

Competing interests: None declared

References to electronic databases: Citrullinaemia, type II, adult-onset (CTLN2): OMIM 603471. Citrullinaemia, type II, neonatal-onset (neonatal intrahepatic cholestasis caused by citrin deficiency; NICCD): OMIM 605814.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutoh, K., Kurokawa, K., Kobayashi, K. et al. Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinaemia with arginine and sodium pyruvate. J Inherit Metab Dis 31 (Suppl 2), 343–347 (2008). https://doi.org/10.1007/s10545-008-0914-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0914-x

Keywords

Navigation