Skip to main content
Log in

Extracellular matrix turnover and disease severity in Anderson–Fabry disease

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Background: Anderson–Fabry Disease (AFD) is an inherited metabolic disease associated with premature death secondary to cardiovascular and renal disease. Patients with AFD develop progressive left ventricular (LV) remodelling and heart failure. We hypothesized that altered extracellular matrix (ECM) turnover contributes to the pathophysiology of cardiac disease in AFD. Methods and Results: Twenty-nine consecutive patients (44.1 ± 11.7 years, 15 male) with AFD and 21 normal controls (39.7 ± 11.3 years, 10 male) had serum analysed for matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of matrix metalloproteinase-1 and -2 (TIMP-1, TIMP-2). All patients underwent clinical assessment, echocardiography and Mainz Severity Score Index (MSSI) measurement, a validated severity score in AFD. MMP-9 levels were significantly higher in patients than controls (1003.8 ± 337.8 ng/ml vs 576.7 ± 276.3 ng/ml respectively, p < 0.001). There were no differences in TIMP levels between patients and controls. There was a positive correlation between MMP-9 levels and MSSI (r = 0.5, p = 0.01). There was a negative correlation between MMP-9 and endocardial fractional shortening (FS) (r = −0.5, p = 0.01) and mid-wall FS (r = −0.6, p = 0.001). There was no correlation between other echocardiographic parameters and MMP-9 levels. These relations were independent of age and sex using stepwise linear regression analysis. Conclusions: Patients with AFD have abnormal ECM turnover compared to normal controls. The correlation between MMP-9 levels and systolic function suggests that altered ECM turnover is important in cardiac remodelling. The association between MMP-9 and overall disease severity suggests that circulating levels of MMP-9 may provide a useful marker for assessing the response of patients with AFD to enzyme replacement treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AFD:

Anderson-Fabry disease

ECM:

extracellular matrix

FSe :

endocardial fractional shortening

FSm :

mid wall fractional shortening

IVS:

interventricular septum thickness

LV:

left ventricular

LVed:

end-diastolic diameter

LVes:

left ventricular end-systolic diameter

LVH:

left ventricular hypertrophy

LVMI:

LV mass indexed to body surface area

MMPs:

matrix metalloproteinases

MSSI:

Mainz Severity Score Index

MWd:

diastolic midwall thickness

MWs:

systolic midwall thickness

PW:

posterior wall thickness

RWT:

relative wall thickness

TIMPS:

tissue inhibitors of metalloproteinases

References

  • Altieri P, Brunelli C, Garibaldi S, et al (2003) Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur J Clin Invest 33(8): 648–656.

    Article  PubMed  CAS  Google Scholar 

  • Boutouyrie P, Laurent S, Laloux B, Lidove O, Grunfeld JP, Germain DP (2002) Arterial remodelling in Fabry disease. Acta Paediatr Suppl 91(439): 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Desnick RJ, Ioannou YA, Eng CM (2001) α-Galactosidase A deficiency: Fabry disease.In: Scriver CR, Beaudet al, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc, eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3733–3774.

    Google Scholar 

  • Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55(4): 613–618.

    PubMed  CAS  Google Scholar 

  • Devereux RB, Alonso DR, Lutas EM, et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6): 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Devereux RB, de Simone G, Pickering TG, Schwartz JE, Roman MJ (1998) Relation of left ventricular midwall function to cardiovascular risk factors and arterial structure and function. Hypertension 31(4): 929–936.

    PubMed  CAS  Google Scholar 

  • Dolgilevich SM, Siri FM, Atlas SA, Eng C (2001) Changes in collagenase and collagen gene expression after induction of aortocaval fistula in rats. Am J Physiol Heart Circ Physiol 281(1): H207–214.

    PubMed  CAS  Google Scholar 

  • Elleder M, Bradova V, Smid F, et al (1990) Cardiocyte storage and hypertrophy as a sole manifestation of Fabry’s disease. Report on a case simulating hypertrophic non-obstructive cardiomyopathy. Virchows Archiv A Pathol Anat Histopathol 417(5): 449–455.

    Article  CAS  Google Scholar 

  • Ferrans VJ, Hibbs RG, Burda CD (1969) The heart in Fabry’s disease. A histochemical and electron microscopic study. Am J Cardiol 24(1): 95–110.

    Article  Google Scholar 

  • Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K (2001) Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 141(2): 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Kaden JJ, Dempfle CE, Sueselbeck T, et al (2003) Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction. Cardiology 99(3): 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Kampmann C, Baehner F, Whybra C, et al (2002) Cardiac manifestations of Anderson–Fabry disease in heterozygous females. J Am Coll Cardiol 40(9): 1668–1674.

    Article  PubMed  Google Scholar 

  • Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40(2): 136–141.

    Article  PubMed  CAS  Google Scholar 

  • MacDermot KD, Holmes A, Miners AH (2001) Anderson–Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 38(11): 750–760.

    Article  PubMed  CAS  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 13(5): 534–540.

    Article  PubMed  CAS  Google Scholar 

  • McDonnell S, Morgan M, Lynch C (1999) Role of matrix metalloproteinases in normal and disease processes. Biochem Soc Trans 27(4): 734–740.

    PubMed  CAS  Google Scholar 

  • Mehta A, Ricci R, Widmer U, et al (2004) Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 34(3): 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Mills K, Vellodi A, Morris P, et al (2004) Monitoring the clinical and biochemical response to enzyme replacement therapy in three children with Fabry disease. Eur J Pediatr 163(10): 595–603.

    PubMed  CAS  Google Scholar 

  • Moon JC, Sachdev B, Elkington AG, et al (2003) Gadolinium enhanced cardiovascular magnetic resonance in Anderson–Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 24(23): 2151–2155.

    Article  PubMed  Google Scholar 

  • Nagao Y, Nakashima H, Fukuhara Y, et al (1991) Hypertrophic cardiomyopathy in late-onset variant of Fabry disease with high residual activity of alpha-galactosidase A. Clin Genet 39(3): 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274(31): 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18(5): 1135–1149.

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Sigusch HH, Hensse J, Tyagi SC, Korfer R, Figulla HR (2002) Cardiac remodelling in end stage heart failure: upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 88(5): 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Shah JS, Hughes DA, Sachdev B, et al (2005a) Prevalence and clinical significance of cardiac arrhythmia in Anderson–Fabry disease. Am J Cardiol 96(6): 842–846.

    Article  Google Scholar 

  • Shah JS, Lee P, Hughes D, et al (2005b) The natural history of left ventricular systolic function in Anderson–Fabry disease. Heart 91(4): 533–534.

    Article  CAS  Google Scholar 

  • Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH (1991) Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation 83(5): 1676–1684.

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson WG, Seo DW (2005) TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med 11(3): 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom J, Evans JC, Benjamin EJ, et al (2004) Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: The Framingham Heart Study. Circulation 109(23): 2850–2856.

    Article  PubMed  CAS  Google Scholar 

  • Tayebjee MH, Nadar S, Blann AD, Gareth Beevers D, MacFadyen RJ, Lip GY (2004a) Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens 17(9): 764–769.

    CAS  Google Scholar 

  • Tayebjee MH, Nadar SK, MacFadyen RJ, Lip GY (2004b) Tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9 levels in patients with hypertension: relationship to tissue Doppler indices of diastolic relaxation. Am J Hypertens 17(9): 770–774.

    CAS  Google Scholar 

  • Tayebjee MH, Lip GY, MacFadyen RJ (2005a) Matrix metalloproteinases in coronary artery disease:clinical and therapeutic implications and pathological significance. Curr Med Chem 12: 763–771.

    Article  Google Scholar 

  • Tayebjee MH, Tan KT, MacFadyen RJ, Lip GYH (2005b) Abnormal circulating levels of metalloprotease 9 and its tissue inhibitor 1 in angiographically proven peripheral arterial disease: relationship to disease severity. J Intern Med 257(1): 110–116.

    Article  CAS  Google Scholar 

  • The Criteria Committee of the New York Heart Association (1994) Nomenclature and Criteria for Diagnosis of Diseases of the Heart and Great Vessels. Boston: Little, Brown, 253–256.

    Google Scholar 

  • Weidemann F, Breunig F, Beer M, et al (2005) The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J 26(12): 1221–1227.

    Article  PubMed  Google Scholar 

  • Whybra C, Kampmann C, Krummenauer F, et al (2004) The Mainz Severity Score Index: a new instrument for quantifying the Anderson–Fabry disease phenotype, and the response of patients to enzyme replacement therapy. Clin Genet 65(4): 299– 307.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Elliott.

Additional information

Communicating editor: Robert Desnick

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, J.S., Hughes, D.A., Tayebjee, M.H. et al. Extracellular matrix turnover and disease severity in Anderson–Fabry disease. J Inherit Metab Dis 30, 88–95 (2007). https://doi.org/10.1007/s10545-006-0360-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0360-6

Keywords

Navigation