Skip to main content
Log in

A rapid and low-cost platform for detection of bacterial based on microchamber PCR microfluidic chip

  • Research
  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Polymerase chain reaction (PCR) has been considered as the gold standard for detecting nucleic acids. The simple PCR system is of great significance for medical applications in remote areas, especially for the developing countries. Herein, we proposed a low-cost self-assembled platform for microchamber PCR. The working principle is rotating the chamber PCR microfluidic chip between two heaters with fixed temperature to solve the problem of low temperature variation rate. The system consists of two temperature controllers, a screw slide rail, a chamber array microfluidic chip and a self-built software. Such a system can be constructed at a cost of about US$60. The micro chamber PCR can be finished by rotating the microfluidic chip between two heaters with fixed temperature. Results demonstrated that the sensitivity of the temperature controller is 0.1℃. The relative error of the duration for the microfluidic chip was 0.02 s. Finally, we successfully finished amplification of the target gene of Porphyromonas gingivalis in the chamber PCR microfluidic chip within 35 min and on-site detection of its PCR products by fluorescence. The chip consisted of 3200 cylindrical chambers. The volume of reagent in each volume is as low as 0.628 nL. This work provides an effective method to reduce the amplification time required for micro chamber PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • S.E. Cavanaugh, A.S. Bathrick, Forensic science international: Genetics. 32,40 – 9(2018)

  • S. Chen, Y. Sun, F. Fan, S. Chen, Y. Zhang, Y. Zhang et al., TRAC Trends Anal. Chem. 157,116737(2022)

  • X. Cui, L. Wu, Y. Wu, J.H. Zhang, Q. Zhao, F.X. Jing et al., Anal. Chim. Acta 1107,127 – 34(2020)

  • J.S. Farrar, C.T. Wittwer, Clin Chem. 61,145 – 53(2015)

  • F. Gouriet Fdr, Fenollar, J.-Y. Patrice, M. Drancourt, D. Raoult, J. Clin. Microbiol. 43, 4993–5002 (2005)

    Article  Google Scholar 

  • K. Hosokawa, H. Ohmori, Analytical Sciences. 39,2067-74(2023)

  • Y. Huang, Z. Gao, C. Ma, Y. Sun, Y. Huang, C. Jia et al., Analyst (2023)

  • M.U. Kopp, A.J. Mello, A. Manz, Science. 280, 1046–1048 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  • M. Krishnan, V.M. Ugaz, M.A. Burns, Science. 298, 793 (2002)

    Article  PubMed  Google Scholar 

  • S.H. Lee, S.-Y. Ruan, S.-C. Pan, T.-F. Lee, J.-Y. Chien, P.-R. Hsueh, J. Microbiol. Immunol. Infect. 52, 920–928 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Z. Li, Y. Zhao, D. Zhang, S. Zhuang, Y. Yamaguchi, Sens. Actuators B 230,779 – 84(2016)

  • Z. Li, R. Ju, S. Sekine, D. Zhang, S. Zhuang, Y. Yamaguchi, Lab. On a Chip. 19, 2663–2668 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Z. Li, J. Liu, P. Wang, C. Tao, L. Zheng, S. Sekine et al., Lab. On a Chip. 21, 3159–3164 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Z. Li, Y. Wang, Z. Gao, S. Sekine, Q. You, S. Zhuang et al., Anal. Chim. Acta 1251,340995(2023)

  • C. Liu, W. Eschen, L. Loetgering, D.S. Penagos Molina, R. Klas, A. Iliou et al., PhotoniX. 4, 1–15 (2023)

    Article  Google Scholar 

  • T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, J. Polym. Sci. Pol. Phys. 38,415 – 34(2000)

  • Y. Ning, X. Cui, C. Yang, F. Jing, X. Bian, L. Yi et al., Anal. Chim. Acta. 1055, 65–73 (2019)

    Article  CAS  PubMed  Google Scholar 

  • T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino et al., Nucleic Acids Res. 28, e63 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J. Shen, J. Zheng, Z. Li, Y. Liu, F. Jing, X. Wan et al., Lab. On a Chip. 21, 3742–3747 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Q. Song, Y.B. Gao, Q.Y. Zhu, Q.C. Tian, B.W. Yu, B.F. Song et al., Biomed. Microdevices. 17, 64 (2015)

    Article  PubMed  Google Scholar 

  • T. Suo, X. Liu, J. Feng, M. Guo, W. Hu, D. Guo et al., Emerg. Microbes Infections. 9, 1259–1268 (2020)

    Article  CAS  Google Scholar 

  • H. Wang, Y.-L. Zhang, D.-D. Han, W. Wang, H.-B. Sun, PhotoniX. 2, 1–13 (2021)

    Article  CAS  Google Scholar 

  • L. Xu, H. Lee, D. Jetta, K.W. Oh, Lab. On a Chip. 15, 3962–3979 (2015)

    Article  CAS  PubMed  Google Scholar 

  • B. Yang, P. Wang, Z. Li, C. Tao, Q. You, S. Sekine et al., Lab. On a Chip. 22, 733–737 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Q.Y. Zhu, L. Qiu, B.W. Yu, Y.N. Xu, Y.B. Gao, T.T. Pan et al., Lab. On a Chip. 14, 1176–1185 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Q.Y. Zhu, Y.N. Xu, L. Qiu, C.C. Ma, B.W. Yu, Q. Song et al., Lab. On a Chip. 17, 1655–1665 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Commission of Shanghai Municipality, China (No.18441900400 and No.19ZR1477500). It was also supported by Excellent Young Talents support plan in Colleges of Anhui Province Grant (gxgnfx 2021167).

Author information

Authors and Affiliations

Authors

Contributions

Z. L: Project administration, Supervision, Funding acquisition, Writing; X. M, X. W, X. Y: Methodology, Data acquisition; Z. Z and B. Y: Methodology, Periodontal pathogen extraction; D. Z: Project administration, Supervision; Y. Y: Project administration, Supervision, Review &editing; J. Y and Y. Z: Data analysis, Review &editing.

Corresponding authors

Correspondence to Dawei Zhang or Yoshinori Yamaguchi.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ma, X., Zhang, Z. et al. A rapid and low-cost platform for detection of bacterial based on microchamber PCR microfluidic chip. Biomed Microdevices 26, 20 (2024). https://doi.org/10.1007/s10544-024-00699-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-024-00699-x

Keywords

Navigation