Abstract
Accurate, rapid, and multiplexed nucleic acid detection is critical for environmental and biomedical monitoring. In recent years, CRISPR-Cas12a has shown great potential in improving the performance of DNA biosensing. However, the nonspecific trans-cleavage activity of Cas12a complicates the multiplexing capability of Cas12a biosensing. We report a 3D-printed composable microfluidic plate (cPlate) device that utilizes miniaturized wells and microfluidic loading for a multiplexed CRISPR-Cas12a assay. The device easily combines loop-mediated isothermal amplification (LAMP) and CRISPR-Cas12a readout in a simple and high-throughput workflow with low reagent consumption. To ensure the maximum performance of the device, the concentration of Cas12a and detection probe was optimized, which yielded a four-fold sensitivity improvement. Our device demonstrates sensitive detection to the fg mL− 1 level for four waterborne pathogens including shigella, campylobacter, cholera, and legionella within 1 h, making it suitable for low-resource settings.
Graphical Abstract

This is a preview of subscription content,
to check access.



Similar content being viewed by others
References
C.M. Ackerman, C. Myhrvold, S.G. Thakku et al., Massively multiplexed nucleic acid detection with Cas13. Nature. 582, 277–282 (2020). https://doi.org/10.1038/s41586-020-2279-8
Z. Ali, R. Aman, A. Mahas et al., iSCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 288, 198129 (2020). https://doi.org/10.1016/j.virusres.2020.198129
L. Bai, L. Wang, S. Huang et al., Rapid, Visual, and sequence-specific detection of Salmonella in Egg Liquid with vis-NEAA, a CRISPR/Cas12 empowered New Strategy. J. Agric. Food Chem. 70, 2401–2409 (2022). https://doi.org/10.1021/acs.jafc.1c06715
C. Blanluet, D.A. Huyke, A. Ramachandran et al., Detection and discrimination of single nucleotide polymorphisms by quantification of CRISPR-Cas Catalytic Efficiency. Anal. Chem. 94, 15117–15123 (2022). https://doi.org/10.1021/acs.analchem.2c03338
J.P. Broughton, X. Deng, G. Yu et al., CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020). https://doi.org/10.1038/s41587-020-0513-4
R. Bruch, G.A. Urban, C. Dincer, CRISPR/Cas Powered Multiplexed Biosensing. Trends Biotechnol. 37, 791–792 (2019). https://doi.org/10.1016/j.tibtech.2019.04.005
J.S. Chen, E. Ma, L.B. Harrington et al., CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360, 436–439 (2018). https://doi.org/10.1126/science.aar6245
Z. Chen, J. Li, T. Li et al., A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev. 9, nwac104 (2022). https://doi.org/10.1093/nsr/nwac104
J.-H. Choi, J. Lim, M. Shin et al., CRISPR-Cas12a-Based nucleic acid amplification-free DNA biosensor via au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 21, 693–699 (2021). https://doi.org/10.1021/acs.nanolett.0c04303
J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee et al., Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356, 438–442 (2017). https://doi.org/10.1126/science.aam9321
J.S. Gootenberg, O.O. Abudayyeh, M.J. Kellner et al., Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360, 439–444 (2018). https://doi.org/10.1126/science.aaq0179
Q. He, D. Yu, M. Bao et al., High-throughput and all-solution phase african swine fever virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosens. Bioelectron. 154, 112068 (2020). https://doi.org/10.1016/j.bios.2020.112068
Z. He, J. Huffman, K. Curtin et al., Composable microfluidic plates (cPlate): a simple and scalable fluid manipulation system for multiplexed enzyme-linked immunosorbent assay (ELISA). Anal. Chem. 93, 1489–1497 (2021). https://doi.org/10.1021/acs.analchem.0c03651
K. Hsieh, G. Zhao, T.-H. Wang, Applying biosensor development concepts to improve preamplification-free CRISPR/Cas12a-Dx. Analyst. 145, 4880–4888 (2020). https://doi.org/10.1039/D0AN00664E
T. Hu, X. Ke, W. Li et al., CRISPR/Cas12a-Enabled Multiplex Biosensing Strategy Via an affordable and visual Nylon membrane readout. Adv. Sci. 10, 2204689 (2023). https://doi.org/10.1002/advs.202204689
M.M. Kaminski, O.O. Abudayyeh, J.S. Gootenberg et al., CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021). https://doi.org/10.1038/s41551-021-00760-7
S. Kanitchinda, J. Srisala, R. Suebsing et al., CRISPR-Cas fluorescent cleavage assay coupled with recombinase polymerase amplification for sensitive and specific detection of Enterocytozoon hepatopenaei. Biotechnol. Rep. 27, e00485 (2020). https://doi.org/10.1016/j.btre.2020.e00485
Y. Li, L. Liu, G. Liu, CRISPR/Cas Multiplexed Biosensing: a challenge or an insurmountable obstacle? Trends Biotechnol. 37, 792–795 (2019). https://doi.org/10.1016/j.tibtech.2019.04.012
F. Li, Q. Ye, M. Chen et al., An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosens. Bioelectron. 179, 113073 (2021). https://doi.org/10.1016/j.bios.2021.113073
Z. Li, X. Ding, K. Yin et al., Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens. Bioelectron. 199, 113865 (2022). https://doi.org/10.1016/j.bios.2021.113865
A. Mahas, N. Hassan, R. Aman et al., LAMP-Coupled CRISPR–Cas12a Module for Rapid and Sensitive Detection of Plant DNA viruses. Viruses. 13, 466 (2021). https://doi.org/10.3390/v13030466
O. Mukama, J. Wu, Z. Li et al., An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens. Bioelectron. 159, 112143 (2020). https://doi.org/10.1016/j.bios.2020.112143
E.A. Nalefski, N. Patel, P.J.Y. Leung et al., Kinetic analysis of Cas12a and Cas13a RNA-Guided nucleases for development of improved CRISPR-Based diagnostics. iScience. 24, 102996 (2021). https://doi.org/10.1016/j.isci.2021.102996
B. Pang, J. Xu, Y. Liu et al., Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using Loop-Mediated amplification and CRISPR Technology. Anal. Chem. 92, 16204–16212 (2020). https://doi.org/10.1021/acs.analchem.0c04047
A. Ramachandran, J.G. Santiago, CRISPR enzyme kinetics for Molecular Diagnostics. Anal. Chem. 93, 7456–7464 (2021). https://doi.org/10.1021/acs.analchem.1c00525
O. Scheler, B. Glynn, A. Kurg, Nucleic acid detection technologies and marker molecules in bacterial diagnostics. Expert Rev. Mol. Diagn. 14, 489–500 (2014). https://doi.org/10.1586/14737159.2014.908710
T.J. Sullivan, A.K. Dhar, R. Cruz-Flores, A.G. Bodnar, Rapid, CRISPR-Based, Field-Deployable detection of White Spot Syndrome Virus in shrimp. Sci. Rep. 9, 19702 (2019). https://doi.org/10.1038/s41598-019-56170-y
J.-H. Tsou, Q. Leng, F. Jiang, A CRISPR test for detection of circulating nuclei acids. Translational Oncol. 12, 1566–1573 (2019). https://doi.org/10.1016/j.tranon.2019.08.011
van J.E. Dongen, J.T.W. Berendsen, R.D.M. Steenbergen et al., Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens. Bioelectron. 166, 112445 (2020). https://doi.org/10.1016/j.bios.2020.112445
B. Wang, R. Wang, D. Wang et al., Cas12aVDet: a CRISPR/Cas12a-Based platform for Rapid and Visual Nucleic Acid Detection. Anal. Chem. 91, 12156–12161 (2019). https://doi.org/10.1021/acs.analchem.9b01526
R. Wang, C. Qian, Y. Pang et al., opvCRISPR: one-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens. Bioelectron. 172, 112766 (2021). https://doi.org/10.1016/j.bios.2020.112766
Z. Xu, D. Chen, T. Li et al., Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat. Commun. 13, 6480 (2022). https://doi.org/10.1038/s41467-022-34086-y
T. Yu, S. Zhang, R. Matei et al., Coupling smartphone and CRISPR–Cas12a for digital and multiplexed nucleic acid detection. AIChE J. 67 (2021). https://doi.org/10.1002/aic.17365
H. Yue, B. Shu, T. Tian et al., Droplet Cas12a Assay enables DNA quantification from unamplified samples at the single-molecule level. Nano Lett. 21, 4643–4653 (2021). https://doi.org/10.1021/acs.nanolett.1c00715
T.S. Zavvar, Z. Khoshbin, M. Ramezani et al., CRISPR/Cas-engineered technology: innovative approach for biosensor development. Biosens. Bioelectron. 214, 114501 (2022). https://doi.org/10.1016/j.bios.2022.114501
Acknowledgements
This work was partly supported by the National Institute of Health (R01GM135432) and National Science Foundation (ECCS-2144216). KC acknowledges NSF Graduate Research Fellowship Program (GRFP) grant (#13300542). We acknowledge the use of WVU BioNano Shared Research Facilities.
Author information
Authors and Affiliations
Contributions
K.C. and P.L. conceived and planned the experiments. K.C., J.W., B.F., and B.B. carried out the experiments. K.C., J.W., B.F., and B.B. contributed to the device preparation. K.C. and P.L. contributed to the interpretation of the results. K.C. took the lead in writing the manuscript. All authors reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Curtin, K., Wang, J., Fike, B. et al. A 3D printed microfluidic device for scalable multiplexed CRISPR-cas12a biosensing. Biomed Microdevices 25, 34 (2023). https://doi.org/10.1007/s10544-023-00675-x
Accepted:
Published:
DOI: https://doi.org/10.1007/s10544-023-00675-x