Skip to main content
Log in

Glucose sensing on screen-printed electrochemical electrodes based on porous graphene aerogel @prussian blue

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

As one of the three major chronic diseases, diabetes often causes many complications, which can affect various parts of the body and even threaten the life of the patients. At present, the situation of diabetes in the world is quite serious. Accurate detection of blood glucose is very important for the diagnosis, treatment and medication of diabetes as well as the self-management of diabetic patients. In this paper, an electrochemical glucose biosensor was developed based on screen-printed electrode (SPE) modified with composite material of graphene aerogel (GA) and Prussian blue (PB) (denoted as GA@PB), which was fabricated via chemical reduction using L-ascorbic acid as a reducing agent through a freeze-drying process. Glucose was specifically captured by glucose oxidase (GOx) which were immobilized into the GA@PB by chitosan. The structure and performance of the sensor were characterized by scanning electron microscopy (SEM), Raman spectroscopy measurements, Fourier transform infrared spectrometer (FTIR), cyclic voltammetry (CV) and amperometric detection. The sensor exhibited a linear range of 0.5–6.0 mmol·L−1 with limit of detection (LOD) of 0.15 mmol·L−1, indicating that the combination of graphene aerogel and Prussian blue possess well conductivity and catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SPE:

Screen-printed electrode

PB:

Prussian blue

GA:

Graphene aerogel

GOx:

Glucose oxidase

CV:

Cyclic voltammetry

References

  • B. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, Biosens. Bioelectron. 94, 443–455 (2017)

    Article  Google Scholar 

  • B.J. Brownlee, M. Bahari, J.N. Harb, J.C. Claussen, B.D. Iverson, Appl. Mater. Interfaces 10(34), 28351–28360 (2018)

    Article  Google Scholar 

  • L. Chen, X.J. Wang, X.T. Zhang, H.M. Zhang, J. Mater. Chem. 22(41), 22090–22096 (2012)

    Article  Google Scholar 

  • T. Dayakar, K. Venkateswara Rao, K. Bikshalu, V. Rajendar, S.H. Park, Mater. Sci. Eng. C 75, 1472–1479 (2017)

  • H. Ding, L. Zhao, Y. Li, X. He, Asian J. Chem. 20(3), 2327–2336 (2008)

    Google Scholar 

  • A.M. Farah, F.T. Thema, E.D. Dikio, Int. J. Electrochem. Sci. 7(6), 5069–5083 (2012)

    Google Scholar 

  • M.P. Gangola, S. Jaiswal, Y.P. Khedikar, R.N. Chibbar, Food Chem. 154, 127–133 (2014)

    Article  Google Scholar 

  • K. Grennan, A.J. Killard, M.R. Smyth, Electroanalysis 13(8–9), 745–750 (2001)

    Article  Google Scholar 

  • T. Hu, Y. Ye, K. Chen, F.F. Long, W. Sang, Y.L. Zhou, D.K. Sun, Z.H. Ni, Anal. Methods 10(48), 5749–5754 (2018)

    Article  Google Scholar 

  • M. Inagaki, F.Y. Kang, J. Mater. Chem. A 2(33), 13193–13206 (2014)

    Article  Google Scholar 

  • A.A. Karyakin, E.E. Karyakina, Russ. Chem. Bull. 50(10), 1811–1817 (2001)

    Article  Google Scholar 

  • Z.F. Li, J.H. Chen, W. Li, K. Chen, L.H. Nie, S.Z. Yao, J. Electroanal. Chem. 603(1), 59–66 (2007)

    Article  Google Scholar 

  • X. Liu, W. Yang, L. Chen, J. Jia, Electrochim. Acta 235, 519–526 (2017)

    Article  Google Scholar 

  • J. Ma, X.F. Hou, B. Zhang, Y.N. Wang, L.C. He, J. Pharm. Biomed. Anal. 91, 24–31 (2014)

    Article  Google Scholar 

  • W. Meng, Y.Y. Wen, L. Dai, Z.X. He, L. Wang, Sens. Actuators, B Chem. 260, 852–860 (2018)

    Article  Google Scholar 

  • J.D. Oliver, M. Gaborieau, E.F. Hilder, P. Castignolles, J. Chromatogr. A 1291, 179–186 (2013)

    Article  Google Scholar 

  • M. Pumera, Electrochem. Commun. 36, 14–18 (2013)

    Article  Google Scholar 

  • M. Shao, X. Xu, J. Han, J. Zhao, W. Shi, X. Kong, M. Wei, D.G. Evans et al., Langmuir 27(13), 8233–8240 (2011)

    Article  Google Scholar 

  • B. Sljukic, N.A. Malakhova, K.Z. Brainina, C.E. Banks, R.G. Compton, Electroanalysis 18(9), 928–930 (2006)

    Article  Google Scholar 

  • S. Su, Z.W. Lu, J. Li, Q. Hao, W. Liu, C.F. Zhu, X.Z. Shen, J.Y. Shi et al., New J. Chem. 42(9), 6750–6755 (2018)

    Article  Google Scholar 

  • S.Y. Toh, K.S. Loh, S.K. Kamarudin, W.R.W. Daud, Chem. Eng. J. 251, 422–434 (2014)

    Article  Google Scholar 

  • L. Wang, W. Zhu, W. Lu, X. Qin, X. Xu, Biosens. Bioelectron. 111, 41–46 (2018)

    Article  Google Scholar 

  • W.-Q. Xie, Y.-X. Gong, K.-X. Yu, J. Chromatogr. A 1520, 143–146 (2017)

    Article  Google Scholar 

  • X. Xu, F.W. Ming, J.Q. Hong, Y.Q. Xie, Z.C. Wang, Mater. Lett. 179, 52–56 (2016)

    Article  Google Scholar 

  • Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, Energy Storage Mater. 9, 11–30 (2017)

    Article  Google Scholar 

  • J. Xu, K. Xu, Y. Han, D. Wang, X. Li, T. Hu, H. Yi, Z. Ni, Analyst (2020)

  • E.H. Yoo, S.Y. Lee, Sensors (Basel) 10(5), 4558–76 (2017)

  • L. Yuen, P. Saeedi, M. Riaz, S. Karuranga, H. Divakar, N. Levitt, X. Yang, D. Simmons, Diabetes Res. Clin. Pract. 157 (2019)

  • J.F. Zhai, Y.M. Zhai, D. Wen, S.J. Dong, Electroanalysis 21(20), 2207–2212 (2009)

    Article  Google Scholar 

  • W.L. Zhang, H.J. Choi, J. Intell. Mater. Syst. Struct. 26(14), 1826–1835 (2015)

    Article  Google Scholar 

  • L.N. Zhou, Z.B. Yang, J. Yang, Y.G. Wu, D.S. Wei, Chem. Phys. Lett. 677, 7–12 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Scientific Instrument and Equipment Development Project (Grant No.: 51627808), National Natural Science Foundation of China (Grant No. 51605088), and Natural Science Foundation of Jiangsu Province (Grant No. BK20170667, BK20201278), the Fundamental Research Funds for the Central Universities (2242016K41022), and the Zhishan Youth Scholar Program of SEU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Li, Hong Yi or Zhonghua Ni.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1: Figure S1. (A) Three-layer structure and (B) designed size of screen-printed electrodes (in mm)

Figure S2. Four screen-printing plates designed for SPE: (A) Ag ink layer, (B) carbon ink layer, (C) Ag/AgCl ink layer and (D) insulation ink layer

Figure S3. The CV curves of pure GA modified SPE in PBS with 1mM H2O2, 2mM H2O2 and without H2O2, respectively

Figure S4. Comparison of CV curves between GA modified SPE and GA@PB modified SPE in different concentrations of H2O2

Figure S5. SEM image of GA at (A) low magnification and (B) high magnification

Table S1 Comparison of performance of different Glucose biosensors (DOCX 2635 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Wang, D., Xu, J. et al. Glucose sensing on screen-printed electrochemical electrodes based on porous graphene aerogel @prussian blue. Biomed Microdevices 24, 14 (2022). https://doi.org/10.1007/s10544-022-00614-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-022-00614-2

Keywords

Navigation