Skip to main content
Log in

Drug release evaluation of Paclitaxel/Poly-L-Lactic acid nanoparticles based on a microfluidic chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Paclitaxel is a commonly used drug in the medical field because of its strong anticancer effect. However, it may produce relatively severe side effects (i.e., allergic reactions). A major characteristic of paclitaxel is low solubility in water. Special solvents are used for dissolving paclitaxel and preparing the paclitaxel drugs, while the solvents themselves will cause certain effects. Polyoxyethylene castor oil, for example, can cause severe allergic reactions in some people, and the clinical use is limited. In this study, we developed a new Paclitaxel/Poly-L-Lactic Acid (PLLA) nanoparticle drug, which is greatly soluble in water, and carried out in vitro drug sustained release research on it and the original paclitaxel drug. However, because the traditional polymer drug carrier usually uses dialysis bag and thermostatic oscillation system to measure the drug release degree in vitro, the results obtained are greatly different from the actual drug release results in human body. Therefore, this paper adopts the microfluidic chip we previously developed to mimic the human blood vessels microenvironment to study the sustained-release of Paclitaxel/PLLA nanoparticles to make the results closer to the release value in human body. The experimental results showed that compared with the original paclitaxel drug, Paclitaxel/PLLA nanoparticles have a long-sustained release time and a slow drug release, realizing the sustained low-dose release of paclitaxel, a cell cycle-specific anticancer drug, and provided certain reference significance and theoretical basis for the research and development of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • U. Heinig, S. Scholz, S. Jennewein, Getting to the bottom of Taxol biosynthesis by fungi. Fungal Diversity 60, 161–170 (2013)

    Article  Google Scholar 

  • P. K, Paclitaxel against cancer: A short review. Med Chem 02, 139–141 (2012)

  • Y. Zhang, Y. Wang, J. Xue, Paclitaxel inhibits breast cancer metastasis via suppression of Aurora kinase-mediated cofilin-1 activity. Exp. Ther. Med. 15, 1269–1276 (2018)

    Google Scholar 

  • S. Ebrahimi, S. S. Hashemi Nazari, A. Dooghaie Moghadam, S. Haghighi, Evaluation of the feasibility of using weekly paclitaxel as neoadjuvant therapy in patients with epithelial ovarian cancer; a pre-post clinical trial. Immunopathologia Persa 7, e09 (2020)

  • D.M. Jiang, H.W. Sim, O. Espin-Garcia, B.A. Chan, A. Natori, C.H. Lim, S. Moignard, E.X. Chen, G. Liu, G. Darling, C.J. Swallow, S. Brar, J. Brierley, J. Ringash, R. Wong, J. Kim, P. Rogalla, S. Hafezi-Bakhtiari, J.J. Knox, R.W. Jang, E. Elimova, Chemoradiotherapy Using Carboplatin plus Paclitaxel versus Cisplatin plus Fluorouracil for Esophageal or Gastroesophageal Junction Cancer. Lancet Oncology 99, 49–56 (2021)

    Article  Google Scholar 

  • B. Besse, L.C. Tsao, D.T. Chao, Y. Fang, J.C. Soria, S. Almokadem, C.P. Belani, Phase Ib safety and pharmacokinetic study of volociximab, an anti-alpha5beta1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Ann. Oncol. 24, 90–96 (2013)

    Article  Google Scholar 

  • K.H. Lee, E.K. Yim, C.J. Kim, S.E. Namkoong, S.J. Um, J.S. Park, Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol. Oncol. 98, 45–53 (2005)

    Article  Google Scholar 

  • M. Spiliotaki, H. Markomanolaki, M. Mela, D. Mavroudis, V. Georgoulias, S. Agelaki, Targeting the insulin-like growth factor I receptor inhibits proliferation and VEGF production of non-small cell lung cancer cells and enhances paclitaxel-mediated anti-tumor effect. Lung Cancer 73, 158–165 (2011)

    Article  Google Scholar 

  • H. Sha, R. Li, X. Bian, Q. Liu, C. Xie, X. Xin, W. Kong, X. Qian, X. Jiang, W. Hu, B. Liu, A tumor-penetrating recombinant protein anti-EGFR-iRGD enhance efficacy of paclitaxel in 3D multicellular spheroids and gastric cancer in vivo. Eur. J. Pharm. Sci. 77, 60–72 (2015)

    Article  Google Scholar 

  • M.T. Huizing, V. H. Misser, R.C. Pieters, W.W. ten Bokkel Huinink, C.H. Veenhof, J.B. Vermorken, H.M. Pinedo, J.H. Beijnen, Taxanes: a new class of antitumor agents. Cancer Invest. 13, 381–404 (1995)

  • B.A. Weaver, How Taxol/paclitaxel kills cancer cells. Mol. Cell. Biochem. 25, 2677–2681 (2014)

    Google Scholar 

  • L. Zhen, F. Qingshan, W. Yu, C. Li, Z. Wenqiang, T. Yuou, Y. Peng, Synergy between vinorelbine and afatinib in the inhibition of non-small cell lung cancer progression by EGFR and p53 signaling pathways. Biomedicine. Pharmacother. 134 (2021)

  • W. Shu, P. Linglin, W. Haoyang, Y. Hong, Y. Xinggang, Evaluation of novel magnetic targeting microspheres loading adriamycin based on carboxymethyl chitosan. J. Drug Delivery Sci. Technol. 55 (2020)

  • M. Noguchi, M. Skwarczynski, H. Prakash, S. Hirota, T. Kimura, Y. Hayashi, Y. Kiso, Development of novel water-soluble photocleavable protective group and its application for design of photoresponsive paclitaxel prodrugs. Bioorg. Med. Chem. 16, 5389–5397 (2008)

    Article  Google Scholar 

  • K.T. Savjani, A.K. Gajjar, J. K. Savjani, Drug solubility: importance and enhancement techniques. ISRN Pharmaceutics 2012, 195727 (2012)

  • A. Zarrabi, M. Vossoughi, Paclitaxel/β-CD-g-PG inclusion complex: An insight into complexation thermodynamics and guest solubility. J. Mol. Liq. 208, 145–150 (2015)

    Article  Google Scholar 

  • M.R. Chowdhury, R.M. Moshikur, R. Wakabayashi, Y. Tahara, N. Kamiya, M. Moniruzzaman, M. Goto, In vivo biocompatibility, pharmacokinetics, antitumor efficacy, and hypersensitivity evaluation of ionic liquid-mediated paclitaxel formulations. Int. J. Pharm. 565, 219–226 (2019)

    Article  Google Scholar 

  • A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J Theor Biol 244, 388–399 (2007)

    Article  MathSciNet  Google Scholar 

  • X. Deng, Y. Liu, J. Qin, T. Ye, S. Wang, A novel pellets/thermosensitive hydrogel depot with low burst release for long-term continuous drug release: Preparation, characterization, in vitro and in vivo studies. J. Drug Delivery Sci. Technol. 60, 102050 (2020)

  • E. Leo, R. Cameroni, F. Forni, Dynamic dialysis for the drug release evaluation from doxorubicin-gelatin nanoparticle conjugates. Int. J. Pharm. 180, 23–30 (1999)

    Article  Google Scholar 

  • V. F. Sadat, D. Hossein, Z. Ali, Design and characterization of a novel pH-sensitive biocompatible and multifunctional nanocarrier for in vitro paclitaxel release. Materials science & engineering. C, Materials for biological applications 119 (2021)

  • M. Kojic, M. Milosevic, V. Simic, E.J. Koay, N. Kojic, A. Ziemys, M. Ferrari, Multiscale smeared finite element model for mass transport in biological tissue: From blood vessels to cells and cellular organelles. Comput. Biol. Med. 99, 7–23 (2018)

    Article  Google Scholar 

  • E.P. Troendle, A. Khan, P.C. Searson, M.B. Ulmschneider, Predicting drug delivery efficiency into tumor tissues through molecular simulation of transport in complex vascular networks. J. Control. Release 292, 221–234 (2018)

    Article  Google Scholar 

  • W. Gyselaers, T. Mesens, K. Tomsin, L. Peeters, Doppler assessment of maternal central venous hemodynamics in uncomplicated pregnancy: a comprehensive review. Facts Views vis Obgyn 1, 171–181 (2009)

    Google Scholar 

  • X. Zhang, Z. Wang, Y.S. Zhang, S. Yan, C. Hou, Y. Gong, J. Qiu, M. Chen, Q. Li, Studying endothelial cell shedding and orientation using adaptive perfusion-culture in a microfluidic vascular chip. Biotechnol. Bioeng. 118, 963–978 (2021)

    Article  Google Scholar 

  • B. Schaller, Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res. 46, 243–260 (2004)

    Article  Google Scholar 

  • J.D. Coffman, J.A. Lempert, Venous flow velocity, venous volume and arterial blood flow. Circulation 52, 141–145 (1975)

    Article  Google Scholar 

  • D.S. Kim, S. Vaquer, L. Mazzolai, L.N. Roberts, J. Pavela, M. Watanabe, G. Weerts, D.A. Green, The effect of microgravity on the human venous system and blood coagulation: a systematic review. Exp. Physiol. (2021)

  • A. Nagy, E.L. Tóth, K. Iván, A. Gáspár, Design and modeling of microfluidic systems for multiple chromatographic separations. Microchem. J. 123, 125–130 (2015)

    Article  Google Scholar 

  • C.P. Miller, C. Tsuchida, Y. Zheng, J. Himmelfarb, S. Akilesh, A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis. Neoplasia 20, 610–620 (2018)

    Article  Google Scholar 

  • R.L. Salazar, S. Camacho-Leon, L. Olivares-Quiroz, J. Hernandez, Design and Simulation of a High Precision Drug Delivery System. Procedia Technol. 3, 334–341 (2012)

    Article  Google Scholar 

  • H. Gao, H. Huang, A. Zheng, N. Yu, N. Li, “Determination of quantitative retention-activity relationships between pharmacokinetic parameters and biological effectiveness fingerprints of Salvia miltiorrhiza constituents using biopartitioning and microemulsion high-performance liquid chromatography,” Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1067, 10–17 (2017a)

    Article  Google Scholar 

  • K.B. Lynch, A. Chen, S. Liu, Miniaturized high-performance liquid chromatography instrumentation. Talanta 177, 94–103 (2018)

    Article  Google Scholar 

  • F. Zarghampour, Y. Yamini, M. Baharfar, M. Faraji, Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis. J. Chromatogr. A 1556, 21–28 (2018)

    Article  Google Scholar 

  • X. Huang, X. Jiang, Q. Yang, Y. Chu, G. Zhang, B. Yang, R. Zhuo, Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery. Journal of Materials Chemistry B 1, 1860–1868 (2013)

    Article  Google Scholar 

  • J.N. Putro, S. Ismadji, C. Gunarto, M. Yuliana, S.P. Santoso, F.E. Soetaredjo, Y.H. Ju, The effect of surfactants modification on nanocrystalline cellulose for paclitaxel loading and release study. J. Mol. Liq. 282, 407–414 (2019)

    Article  Google Scholar 

  • S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nature Materlals 12, 991–1003 (2013)

    Article  Google Scholar 

  • S.M. Jusu, J.D. Obayemi, A.A. Salifu, C.C. Nwazojie, V. Uzonwanne, O.S. Odusanya, W.O. Soboyejo, Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci. Rep. 10, 14188 (2020)

    Article  Google Scholar 

  • H. Thai, C. Thuy Nguyen, L. Thi Thach, M. Thi Tran, H. Duc Mai, T. Thi Thu Nguyen, G. Duc Le, M. Van Can, L. Dai Tran, G. Long Bach, K. Ramadass, C.I. Sathish, Q. Van Le, Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Scie Rep. 10, 909 (2020)

  • D.A. Thankappan, H.K. Raman, J. Jose, S. Sudhakaran, Plant-mediated biosynthesis of zein–pectin nanoparticle: Preparation, characterization and in vitro drug release study. Journal of King Saud University - Science 32, 1785–1791 (2020)

    Article  Google Scholar 

  • J. Wong, A. Brugger, A. Khare, M. Chaubal, P. Papadopoulos, B. Rabinow, J. Kipp, J. Ning, Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev 60, 939–954 (2008)

    Article  Google Scholar 

  • J. C. Ramirez, S. E. Flores-Villaseñor, E. Vargas-Reyes, J. Herrera-Ordonez, S. Torres-Rincón, and R. D. Peralta-Rodríguez, Preparation of PDLLA and PLGA nanoparticles stabilized with PVA and a PVA-SDS mixture: Studies on particle size, degradation and drug release. J. Drug Delivery Sci. Technol. 60, 101907 (2020)

  • V.P. Zhdanov, Intracellular RNA delivery by lipid nanoparticles: Diffusion, degradation, and release. Biosystems 185, 104032 (2019)

  • A. Valério, E. Mancusi, F. Ferreira, S.M.A. Guelli Ulson de Souza, A.A.U. de Souza, S.Y.G. González, Biopolymer-hydrophobic drug fibers and the delivery mechanisms for sustained release applications. European Polym J 112, 400–410 (2019)

  • S.J. McInnes, Y. Irani, K.A. Williams, N.H. Voelcker, Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). Nanomedicine (lond) 7, 995–1016 (2012)

    Article  Google Scholar 

  • S. Zhan, J. Wang, W. Wang, L. Cui, Q. Zhao, Preparation and in vitro release kinetics of nitrendipine-loaded PLLA–PEG–PLLA microparticles by supercritical solution impregnation process. RSC Adv. 9, 16167–16175 (2019)

    Article  Google Scholar 

  • C. Gao, S. Peng, P. Feng, C. Shuai, Bone biomaterials and interactions with stem cells. Bone Research 5, 253–285 (2017b)

    Article  Google Scholar 

  • P. Feng, S. Peng, P. Wu, C. Gao, W. Huang, Y. Deng, C. Shuai, A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds. Sci. Rep. 6, 33385 (2016)

    Article  Google Scholar 

  • C. Shuai, Y. Li, P. Feng, W. Guo, W. Yang, S. Peng, Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): Promoted degradation of PLLA scaffolds. Polym. Testing 68, 27–33 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the International Science & Technology Cooperation Program of China (No.2015DFA30550), the Henan Provincial Natural Science Foundation (No.162300410245), the Major Science and Technology Special Project of Henan Province (No.171100210600), the Program of China Scholarship Council (No.201807045057) and the High Level Talent Internationalization Training Program of Henan Province (No.2019004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Zhang or Qian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Guan, G., Wang, Z. et al. Drug release evaluation of Paclitaxel/Poly-L-Lactic acid nanoparticles based on a microfluidic chip. Biomed Microdevices 23, 57 (2021). https://doi.org/10.1007/s10544-021-00596-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00596-7

Keywords

Navigation