Skip to main content
Log in

A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

For treating cancer at various stages, chemotherapy drugs administered in combination provide better treatment results with lower side effects compared to single-drug therapy. However, finding the potential drug combinations has been challenging due to the large numbers of possible combinations from approved drugs and the failure of in vitro 2D well plate-based cancer models. 3D spheroid-based high-throughput microfluidic platforms recapitulate some of the important features of native tumor tissue and offer a promising alternative to evaluate the combinatory effects of the drugs. This study develops a novel polydimethylsiloxane (PDMS) based microfluidic design with a dynamic environment and strategically placed U-shaped wells for testing all seven possible combinations (three single-drug treatments, three pairwise combinations, treatment with all three drugs) of three chemotherapy drugs (Paclitaxel, Vinorelbine, and Etoposide) on lung tumor spheroids. The design of U-shaped wells has been validated with computational results. Firstly, we test all combinations of drugs on the conventional well plate in static conditions with 3D tumor spheroids. Based on static drug testing results, we show a proof-of-concept by testing the most effective drug combination on the microfluidic device in a dynamic environment. The concentration of the drugs used in combination falls below the maximum tolerated dose (MTD) of the individual drugs, towards low dose metronomic (LDM) chemotherapy. LDM combinatorial chemotherapy identified in this study can potentially lower toxicity and provide better treatment results in cancer patients. The device can be further used to culture patient-specific tumor spheroids and identify synergistic drug combinations for personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not Applicable.

References

  • D. An, K. Kim, J. Kim, Biomol. Ther. 22, 355 (2014)

    Article  Google Scholar 

  • K. I. Au Ieong, C. Yang, C. T. Wong, A. C. Shui, T. T. Y. Wu, T. H. Chen, and R. H. W. Lam, Micromachines. 8, 167 (2017)

  • D.R. Budman, A. Calabro, L.G. Wang, X.M. Liu, L. Stiel, L.M. Adams, W. Kreis, Cancer Invest. 18, 695 (2000)

    Article  Google Scholar 

  • H.N. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, H. Wu, Microfluid. Nanofluidics 19, 9 (2015)

    Article  Google Scholar 

  • H. C. Chang, C. H. Lin, D. Juang, H. W. Wu, C. Y. Lee, C. Chen, C. H. Hsu, Biofabrication. 11, 035024 (2019)

  • X. Chen, H. Chen, D. Wu, Q. Chen, Z. Zhou, R. Zhang, X. Peng, Y.C. Su, D. Sun, Sensors Actuators. B Chem. 276, 507 (2018)

    Google Scholar 

  • X. Cui, Y. Hartanto, H. Zhang, J. R. Soc. Interface. 14, (2017)

  • S. Datta, D. Choudhury, A. Das, D. Das Mukherjee, N. Das, S. S. Roy, G. Chakrabarti, Tumour Biol. 39, 1010428317694314 (2017)

  • N. Dhiman, P. Kingshott, H. Sumer, C.S. Sharma, S.N. Rath, Biosens. Bioelectron. 137, 236 (2019)

    Article  Google Scholar 

  • N. Dhiman, N. Shagaghi, M. Bhave, H. Sumer, P. Kingshott, S.N. Rath, Adv. Biosyst. 4, 1900285 (2020)

    Article  Google Scholar 

  • C.-Y. Huang, D.-T. Ju, C.-F. Chang, P. M. Reddy, B. K. Velmurugan, BioMedicine. 7, (2017)

  • E. Jastrzebska, S. Flis, A. Rakowska, M. Chudy, Z. Jastrzebski, A. Dybko, Z. Brzozka, Microchim. Acta 180, 895 (2013)

    Article  Google Scholar 

  • I. Kareva, D.J. Waxman, G.L. Klement, Cancer Lett. 358, 100 (2015)

    Article  Google Scholar 

  • C. Kim, J.H. Bang, Y.E. Kim, S.H. Lee, J.Y. Kang, Lab Chip 12, 4135 (2012a)

    Article  Google Scholar 

  • J. Kim, D. Taylor, N. Agrawal, H. Wang, H. Kim, A. Han, K. Rege, A. Jayaraman, Lab Chip 12, 1813 (2012b)

    Article  Google Scholar 

  • L. Kim, Y.C. Toh, J. Voldman, H. Yu, Lab Chip 7, 681 (2007)

    Article  Google Scholar 

  • K. Kwapiszewska, A. Michalczuk, M. Rybka, R. Kwapiszewski, Z. Brzózka, Lab Chip 14, 2096 (2014)

    Article  Google Scholar 

  • W. Liu, M. Sun, B. Lu, M. Yan, K. Han, J. Wang, Sensors Actuators. B Chem. 292, 111 (2019)

    Google Scholar 

  • W. Liu, J. Xu, T. Li, L. Zhao, C. Ma, S. Shen, J. Wang, Anal. Chem. 87, 9752 (2015)

    Article  Google Scholar 

  • S. Luo, K. Ma, H. Zhu, S. Wang, M. Liu, W. Zhang, S. Liang, N. Xu, Oncol. Lett. 14, 6869 (2017)

    Article  Google Scholar 

  • V. Mehta, S.N. Rath, Bio-Design Manuf. 4, 311 (2021)

    Article  Google Scholar 

  • V. Mehta, S.V. Sudhakaran, S.N. Rath, A.C.S. Biomater, Sci. Eng. 7, 3947 (2021)

    Google Scholar 

  • K. Moshksayan, N. Kashaninejad, M.E. Warkiani, J.G. Lock, H. Moghadas, B. Firoozabadi, M.S. Saidi, N.T. Nguyen, Sensors Actuators. B Chem. 263, 151 (2018a)

    Google Scholar 

  • K. Moshksayan, N. Kashaninejad, M. E. Warkiani, J. G. Lock, H. Moghadas, B. Firoozabadi, M. S. Saidi, N. T. Nguyen, Sensors Actuators, B Chem. (2018b)

  • T. Mulholland, M. McAllister, S. Patek, D. Flint, M. Underwood, A. Sim, J. Edwards, M. Zagnoni, Sci. Rep. 8, 14672 (2018)

    Article  Google Scholar 

  • A. Murray, S.J. Little, P. Stanley, A. Maraveyas, L. Cawkwell, Oncol. Rep. 24, 1049 (2010)

    Article  Google Scholar 

  • B. Patra, C.C. Peng, W.H. Liao, C.H. Lee, Y.C. Tung, Sci. Rep. 6, 21061 (2016)

    Article  Google Scholar 

  • A. Photiou, P. Shah, L.K. Leong, J. Moss, S. Retsas, Eur. J. Cancer Part A 33, 463 (1997)

    Article  Google Scholar 

  • S. Sankar, C.S. Sharma, S.N. Rath, Mater. Sci. Eng. C 94, 703 (2019)

    Article  Google Scholar 

  • J. Sun, W. Liu, Y. Li, A. Gholamipour-Shirazi, A. Abdulla, X. Ding, Microfluid. Nanofluidics 21, 125 (2017)

    Article  Google Scholar 

  • Z. Zhang, Y.C. Chen, S. Urs, L. Chen, D.M. Simeone, E. Yoon, Small 14, 1703617 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the BIRAC-SRISTI Gandhian Young Technological Innovation Award (GYTI) in 2019.

Funding

This work is supported by the BIRAC-SRISTI Gandhian Young Technological Innovation Award (GYTI) in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subha Narayan Rath.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, S., Mehta, V., Ravi, S. et al. A novel design of microfluidic platform for metronomic combinatorial chemotherapy drug screening based on 3D tumor spheroid model. Biomed Microdevices 23, 50 (2021). https://doi.org/10.1007/s10544-021-00593-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00593-w

Keywords

Navigation