Skip to main content
Log in

Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Circulating Tumor Cells (CTCs) play a prominent role in early cancer detection. Emerging label-free techniques can be promising to CTC detection due to advantages in preserving cell integrity and minimal sample consumption. Deterministic Lateral Displacement (DLD) is a size-based label-free technique employing laminar flow for continuous sorting of suspended cells. However, separation based solely on size is challenging as the size distributions of CTCs tend to overlap with blood cells. Moreover, the rarity of CTCs in blood requires high throughput processing of samples for clinical utility. In this work, a dielectrophoretic DLD technique is presented to segregate CTCs from blood. This technique utilizes the cell size and dielectric properties as well as particle movement caused by polarization effect to accomplish continuous separation at high flow rates. A numerical model is developed and validated to investigate the effects of various parameters related to the fluid flow, micro-post array, and electric field. It is demonstrated that the dielectrophoretic DLD with specific post arrangement can continuously separate A549 lung CTCs from WBCs by applying a field frequency close to the crossover frequency of CTCs. The analysis further indicates that such a device can perform well despite uncertainties of CTC crossover frequencies. Additionally, efficient separation with minimum clogging can be achieved by setting the electric field perpendicular to fluid flow. The presented platform offers distinct advantages and can be potentially combined with techniques such as antibody-based immune-binding methods for rapid detection of CTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • M. Aghaamoo, A. Aghilinejad, X. Chen, J. Xu, On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis 40(10), 1486–1493 (2019)

    Article  Google Scholar 

  • A. Aghilinejad, M. Aghaamoo, X. Chen, On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation. Biomicrofluidics 13(3), 034112 (2019)

  • A. Aghilinejad, M. Aghaamoo, X. Chen, J. Xu, Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation. Electrophoresis 39(5–6), 869–877 (2018)

    Article  Google Scholar 

  • T.R. Carey, K.L. Cotner, B. Li, L.L. Sohn, Developments in label‐free microfluidic methods for single‐cell analysis and sorting. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 11(1), e1529 (2019)

  • J.P. Beech, P. Jonsson, J.O. Tegenfeldt, Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18), 2698–2706 (2009)

    Article  Google Scholar 

  • J.P. Beech, J.O. Tegenfeldt, Tuneable separation in elastomeric microfluidics devices. Lab Chip 8(5), 657–659 (2008)

    Article  Google Scholar 

  • E.B. Cummings, Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng. Med. Biol. Mag. 22(6), 75–84 (2003a)

  • E.B. Cummings, A.K. Singh, Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results. Anal. Chem. 75(18), 4724–4731 (2003b)

  • J.A. Davis, D.W. Inglis, K.J. Morton, D.A. Lawrence, L.R. Huang, S.Y. Chou, J.C. Sturm, R.H. Austin, Deterministic hydrodynamics: taking blood apart. Proc. Natl. Acad. Sci. 103(40), 14779–14784 (2006)

    Article  Google Scholar 

  • B.M. Dincau, A. Aghilinejad, X. Chen, S.Y. Moon, J.H. Kim, Vortex-free high-Reynolds deterministic lateral displacement (DLD) via airfoil pillars. Microfluid. Nanofluid. 22(12), 137 (2018)

    Article  Google Scholar 

  • P.R. Gascoyne, S. Shim, Isolation of circulating tumor cells by dielectrophoresis. Cancers 6(1), 545–579 (2014)

    Article  Google Scholar 

  • P.R. Gascoyne, S. Shim, J. Noshari, F.F. Becker, K. Stemke-Hale, Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis 34(7), 1042–1050 (2013)

    Article  Google Scholar 

  • S.I. Han, Y.D. Joo, K.H. Han, An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst 138(5), 1529–1537 (2013)

    Article  Google Scholar 

  • A. Hochstetter, R. Vernekar, R.H. Austin, H. Becker, J.P. Beech, D.A. Fedosov, G. Gompper, S.C. Kim, J.T. Smith, G. Stolovitzky, J.O. Tegenfeldt, Deterministic Lateral Displacement: Challenges and Perspectives. ACS Nano 14(9), 10784–10795 (2020)

    Article  Google Scholar 

  • L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Continuous particle separation through deterministic lateral displacement. Science 304(5673), 987–990 (2004)

    Article  Google Scholar 

  • D.W. Inglis, J.A. Davis, R.H. Austin, J.C. Sturm, Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6(5), 655–658 (2006)

    Article  Google Scholar 

  • T.B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  • B.J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge university press (2010)

  • S. Lee, S.M. Roh, E. Lee, Y. Park, B.C. Lee, Y. Kwon, H.J. Kim, J. Kim, Applications of converged various forces for detection of biomolecules and novelty of dielectrophoretic force in the applications. Sensors 20(11), 3242 (2020)

    Article  Google Scholar 

  • Z. Liu, F. Huang, J. Du, W. Shu, H. Feng, X. Xu, Y. Chen, Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics 7(1), 011801 (2013a)

  • Z. Liu, W. Zhang, F. Huang, H. Feng, W. Shu, X. Xu, Y. Chen, High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens. Bioelectron. 47, 113–119 (2013b)

    Article  Google Scholar 

  • S. Lin, X. Zhi, D. Chen, F. Xia, Y. Shen, J. Niu, S. Huang, J. Song, J. Miao, D. Cui, X. Ding, A flyover style microfluidic chip for highly purified magnetic cell separation. Biosens. Bioelectron. 129, 175–181 (2019)

    Article  Google Scholar 

  • T. Luo, L. Fan, Y. Zeng, Y. Liu, S. Chen, Q. Tan, R.H. Lam, D. Sun, A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. Lab Chip 18(11), 1521–1532 (2018)

    Article  Google Scholar 

  • M.C. Miller, G.V. Doyle, L.W. Terstappen, Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. oncol. (2010)

  • H. Morgan, T. Sun, D. Holmes, S. Gawad, N.G. Green, Single cell dielectric spectroscopy. J. Phys. D Appl. Phys. 40(1), 61 (2006)

    Article  Google Scholar 

  • B.I. Morshed, M. Shams, T. Mussivand, Electrical lysis: dynamics revisited and advances in on-chip operation. Critical Reviews™ in Biomedical Engineering 41(1), 37–50 (2013)

  • A.R. Muslimov, A.S. Timin, A.V. Petrova, O.S. Epifanovskaya, A.I. Shakirova, K.V. Lepik, A. Gorshkov, E.V. Il’inskaja, A.V. Vasin, B.V. Afanasyev, B. Fehse, Mesenchymal stem cells engineering: microcapsules-assisted gene transfection and magnetic cell separation. ACS Biomaterials Science & Engineering 3(10), 2314–2324 (2017)

  • M. Naghavi, A.A. Abajobir, C. Abbafati, K.M. Abbas, F. Abd-Allah, S.F. Abera, V. Aboyans, O. Adetokunboh, A. Afshin, A. Agrawal, A. Ahmadi, Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 390(10100), 1151–1210 (2017)

    Article  Google Scholar 

  • L. Pang, S. Shen, C. Ma, T. Ma, R. Zhang, C. Tian, L. Zhao, W. Liu, J. Wang, Deformability and size-based cancer cell separation using an integrated microfluidic device. Analyst 140(21), 7335–7346 (2015)

    Article  Google Scholar 

  • E. Pariset, J. Berthier, F. Revol-Cavalier, C. Pudda, D. Gosselin, F. Navarro, B. Icard, V. Agache, Deterministic Lateral Displacement (DLD): Finite element modeling and experimental validation for particle trajectory and separation. Biotech, Biomaterials and Biomedical: TechConnect Briefs (2017)

  • H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge Monographs on Physics) (Cambridge University Press, Cambridge/New York, 1978)

    Google Scholar 

  • H.A. Pohl, The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22(7), 869–871 (1951)

    Article  Google Scholar 

  • T. Salafi, Y. Zhang, Y. Zhang, A Review on Deterministic Lateral Displacement for Particle Separation and Detection. Nano-Micro Letters 11(1), 77 (2019)

    Article  Google Scholar 

  • S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R. Gascoyne, Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics 7(1), 011808 (2013)

  • R.L. Siegel, K.D. Miller, S.A. Fedewa, D.J. Ahnen, R.G. Meester, A. Barzi, A. Jemal, Colorectal cancer statistics, 2017. CA: a cancer j. clinicians. 67(3), 177–193 (2017)

  • J. Sun, C. Liu, M. Li, J. Wang, Y. Xianyu, G. Hu, X. Jiang, Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7(1), 011802 (2013)

  • N. Tottori, T. Nisisako, Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input. Lab Chip 20(11), 1999–2008 (2020)

    Article  Google Scholar 

  • R. Vernekar, T. Krüger, K. Loutherback, K. Morton, D.W. Inglis, D.W, Anisotropic permeability in deterministic lateral displacement arrays. Lab on a Chip 17(19), 3318–3330 (2017)

  • L. Wu, L.Y. Lanry Yung, K.M. Lim, Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6(1), 014113 (2012)

  • N. Xiang, J. Wang, Q. Li, Y. Han, D. Huang, Z. Ni, Precise size-based cell separation via the coupling of inertial microfluidics and deterministic lateral displacement. Anal. Chem. 91(15), 10328–10334 (2019)

    Article  Google Scholar 

  • J. Yang, Y. Huang, X. Wang, X.B. Wang, F.F. Becker, P.R. Gascoyne, Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys. J . 76(6), 3307–3314 (1999)

    Article  Google Scholar 

  • K.K. Zeming, S. Ranjan, Y. Zhang, Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat. Commun. 4(1), 1–8 (2013)

    Article  Google Scholar 

  • K.K. Zeming, T. Salafi, C.H. Chen, Y. Zhang, Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci. Rep. 6, 22934 (2016)

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the National Science Foundation (NSF ECCS- 1917299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Chen.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati, M., Chen, X. Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation. Biomed Microdevices 23, 49 (2021). https://doi.org/10.1007/s10544-021-00587-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00587-8

Keywords

Navigation