Skip to main content
Log in

Fabrication and characterization of a microneedle array electrode with flexible backing for biosignal monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The conventional wet electrode for recording biosignals poses many inconveniences, as it requires an electrolytic gel that dries over time changing its electrical characteristics. The skin typically needs to be abraded when the electrode is applied to record high-quality signals, requiring assistance of trained personnel for the placement of the wet electrode. Alternative electrode designs to overcome these challenges often have difficulties recording small amplitude signals or their fabrication methods are complex and expensive. This research proposes a novel design and a simple fabrication method for a dry microneedle electrode for biosignal monitoring. The electrode can record electroencephalogram and electrocardiogram signals from a human subject without electrolytic gel and it does not require skin preparation such as abrasion, making it suitable for long term measurements as opposed to the wet electrode. When applied to the skin of a human subject with an impact inserter, the electrode has a lower impedance at the skin–electrode interface yielding better signal recording compared to application by hand. The selected electrode materials provides microneedles stiff enough to cross the outmost layer of the skin, while the flexible backing of the electrode has been designed to improve the conformation of the electrode to the rounded shape of the body. The proposed fabrication method for the electrode is based on a simple mold casting process that enables batch production while also reducing the time spent in a cleanroom and the use of expensive machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Data available on request from the authors.

Code availability

Signal processing code available on request from the authors.

References

  • N.A. Alba, R.J. Sclabassi, M. Sun, X.T. Cui, IEEE Trans. Neural Syst. Rehabil. Eng. 18, 415 (2010)

    Article  Google Scholar 

  • M. Arai, Y. Kudo, N. Miki, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3165–3168 (2015a)

  • M. Arai, Y. Nishinaka, N. Miki, Jpn. J. Appl. Phys. 54, 06FP14 (2015b)

  • J.Y. Baek, J.H. An, J.M. Choi, K.S. Park, S.H. Lee, Sens. Actuators, A 143, 423 (2008)

    Article  Google Scholar 

  • M. Böswald, K. Mende, W. Bernschneider, S. Bonakdar, H. Ruder, H. Kissler, E. Sieber, and J.-P. Guggenbichler, Infection 27, S38 (1999)

  • Y. M. Chi, S. R. Deiss, and G. Cauwenberghs, in 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks (IEEE, Berkeley, CA, 2009), pp. 246–250

  • S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, J. Biomech. 37, 1155 (2004)

    Article  Google Scholar 

  • N.S. Dias, J.P. Carmo, A.F. da Silva, P.M. Mendes, J.H. Correia, Sens. Actuators, A 164, 28 (2010)

    Article  Google Scholar 

  • A. M. Dymond, T. L. Babb, L. E. Kaechele, and P. H. Crandall, Biomed. Sci. Instrum. 9, 1 (1972)

  • P. Griss, H.K. Tolvanen-Laakso, P. Merilainen, G. Stemme, IEEE Trans. Biomed. Eng. 49, 597 (2002)

    Article  Google Scholar 

  • K.M. Halprin, Br. J. Dermatol. 86, 14 (1972)

    Article  Google Scholar 

  • L.-S. Hsu, S.-W. Tung, C.-H. Kuo, Y.-J. Yang, Sensors 14, 12370 (2014)

    Article  Google Scholar 

  • H. Hua, W. Tang, X. Xu, D.D. Feng, L. Shu, Micromachines 10, 518 (2019)

    Article  Google Scholar 

  • W. F. Jackson, B. R. Duling, Circ. Res. 53, 105 (1983)

  • S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen, M.R. Prausnitz, Anesth. Analg. 92, 502 (2001)

    Article  Google Scholar 

  • R.S. Khandpur, in Compendium of Biomedical Instrumentation (John Wiley & Sons, Ltd, 2020), pp. 177–182

  • K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J.-B. Lee, C.H. Ahn, J. Micromech. Microeng. 14, 597 (2004)

    Article  Google Scholar 

  • N.K. Lamba, Polyurethanes in Biomedical Applications (Routledge, 2017)

  • L.A. Leslie, A. Geddes, L.E. Baker, Principles of Applied Biomedical Instrumentation (Wiley, 1975)

  • L.-D. Liao, I.-J. Wang, S.-F. Chen, J.-Y. Chang, C.-T. Lin, Sensors 11, 5819 (2011)

    Article  Google Scholar 

  • A. Lopez, P.C. Richardson, IEEE Trans. Biomed. Eng. BME-16, 99 (1969)

  • K. van der Maaden, E. Sekerdag, W. Jiskoot, J. Bouwstra, AAPS J 16, 681 (2014)

    Article  Google Scholar 

  • C. O’Mahony, F. Pini, A. Blake, C. Webster, J. O’Brien, and K. G. McCarthy, Sensors and Actuators A: Physical 186, 130 (2012)

  • O. Mecarelli, in Clinical Electroencephalography, edited by O. Mecarelli (Springer International Publishing, Cham, 2019), pp. 35–52

  • A.R. Mota, L. Duarte, D. Rodrigues, A.C. Martins, A.V. Machado, F. Vaz, P. Fiedler, J. Haueisen, J.M. Nóbrega, and C. Fonseca, Sens. Actuators A, Phys. 199, 310 (2013)

  • B. Mustin, B. Stoeber, Lab Chip 12, 4702 (2012)

    Article  Google Scholar 

  • W.C. Ng, H.L. Seet, K.S. Lee, N. Ning, W.X. Tai, M. Sutedja, J.Y.H. Fuh, X.P. Li, J. Mater. Process. Technol. 209, 4434 (2009)

    Article  Google Scholar 

  • Y. Nishinaka, R. Jun, G. S. Prihandana, N. Miki, Jpn. J. Appl. Phys. 52, 06GL10 (2013)

  • C. O’Mahony, Biomed Microdevices 16, 333 (2014)

    Article  Google Scholar 

  • J. Park, Y. Yoon, S. Choi, M.R. Prausnitz, M.G. Allen, IEEE Trans. Biomed. Eng. 54, 903 (2007)

    Article  Google Scholar 

  • J.-H. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release 104, 51 (2005)

    Article  Google Scholar 

  • S.A. Ranamukhaarachchi, T. Schneider, S. Lehnert, L. Sprenger, J.R. Campbell, I. Mansoor, J.C.Y. Lai, K. Rai, J. Dutz, U.O. Häfeli, B. Stoeber, Macromol. Mater. Eng. 301, 306 (2016)

    Article  Google Scholar 

  • S.A. Ranamukhaarachchi, B. Stoeber, Biomed Microdevices 21, 100 (2019)

    Article  Google Scholar 

  • L. Ren, S. Xu, J. Gao, Z. Lin, Z. Chen, B. Liu, L. Liang, L. Jiang, Sensors (Basel) 18, (2018)

  • P. Shrestha, B. Stoeber, Physics of Fluids 32, 011905 (2020)

  • S. Silver, L.T. Phung, and G. Silver, J. Ind. Microbiol. Biotechnol. 33, 627 (2006)

  • S.R. Sinha, L.R. Sullivan, D. Sabau, D.S.J. Orta, K.E. Dombrowski, J.J. Halford, A.J. Hani, F.W. Drislane, M.M. Stecker, Neurodiagn. J. 56, 235 (2016)

    Article  Google Scholar 

  • E. Spinelli, M. Haberman, Physiol. Meas. 31, S183 (2010)

    Article  Google Scholar 

  • R. Splinter, editor, in Handbook of Physics in Medicine and Biology (CRC Press, 2010), pp. 259–268

  • T.J. Sullivan, S.R. Deiss, G. Cauwenberghs, in 2007 IEEE Biomedical Circuits and Systems Conference (2007), pp. 154–157

  • H. Tachikawa, N. Takano, K. Nishiyabu, N. Miki, Y. Ami, J. Solid Mech. Mater. Eng. 4, 470 (2010)

    Article  Google Scholar 

  • H. Tam, J.G. Webster, IEEE Trans. Biomed. Eng. BME-24, 134 (1977)

  • E. Touitou, B.W. Barry, Enhancement in Drug Delivery (2006)

  • A. Ueno, Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, Y. Ishiyama, IEEE Trans. Biomed. Eng. 54, 759 (2007)

    Article  Google Scholar 

  • M.R. Ven Murthy, L. Carrier-Malhotra, in Protein-Dye Interactions: Developments and Applications, edited by M. A. Vijayalakshmi and O. Bertrand (Springer Netherlands, Dordrecht, 1989), pp. 316–330

  • F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke, H. Verpoorten, A. van den Berg, R. Luttge, J.A. Bouwstra, J. Control. Release 128, 80 (2008)

    Article  Google Scholar 

  • K. Vlach, J. Kijonka, F. Jurek, P. Vavra, P. Zonca, Sens. Actuators, B Chem. 245, 988 (2017)

    Article  Google Scholar 

  • R. Wang, X. Jiang, W. Wang, Z. Li, Sens. Actuators, B Chem. 244, 750 (2017)

    Article  Google Scholar 

  • R. Wang, W. Zhao, W. Wang, Z. Li, J. Microelectromech. Syst. 21, 1084 (2012)

    Article  Google Scholar 

  • N. Wilke, C. Hibert, J. O’Brien, A. Morrissey, Sens. Actuators, A 123–124, 319 (2005)

    Article  Google Scholar 

  • X. Xing, W. Pei, Y. Wang, X. Guo, H. Zhang, Y. Xie, Q. Gui, F. Wang, H. Chen, Sens. Actuators, A 270, 262 (2018)

    Article  Google Scholar 

  • W.C. Yang, Y.S. Huang, B.Y. Shew, C.C. Fu, J. Micromech. Microeng. 23, 035004 (2013)

Download references

Funding

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

We would like to acknowledge CMC Microsystems for the provision of products and services that facilitated this research, including CAD tools, test equipment and fabrication costs.

This research was undertaken, in part, with support from the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Stoeber.

Ethics declarations

Ethics approval

The research presented in this paper was carried out at the University of British Columbia, Canada. The Clinical Research Ethics Board (CREB) at The University of British Columbia classified all the tests that involve human subjects as quality improvement and did not require ethics board review or approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, J., Stoeber, B. Fabrication and characterization of a microneedle array electrode with flexible backing for biosignal monitoring. Biomed Microdevices 23, 53 (2021). https://doi.org/10.1007/s10544-021-00583-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00583-y

Keywords

Navigation