Skip to main content

Advertisement

Log in

Label-free rapid isolation of saccharomyces cerevisiae with optically induced dielectrophoresis-based automatic micromanipulation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is well-known in the baking and brewing industries and always used for the preparation of probiotics, especially its subtype, Saccharomyces boulardii, to prevent and treat various diarrhea and intestinal diseases. However, case reports on the side effects of a wide range of serious infections for the elderly, immunocompromised and critically ill patients after treatment with the S. cerevisiae have been increasing in recent years. The existing diagnose methods of the invasive S. cerevisiae infections in clinical, especially, the key step of the method—cell isolation, is time-consuming that always miss timey diagnose and early prevention. Here, we propose a new automatic micromanipulation method to label-free rapid isolation of S. cerevisiae based on the optically-induced dielectrophoresis (ODEP) technology, combining with image processing and recognition. S. cerevisiae is firstly identified by the image recognition method and then, automatically captured and moved to the target location by designing optical patterns. The results indicate the method can flexibly and automatically manipulate multiple S. cerevisiae cells simultaneously, such as, arranging S. cerevisiae cells, moving an array of the cells at any directions, aggregating the cells, and separating S. cerevisiae from the solution mixed with impurities. This work represents a step toward the use of automatic micromanipulation of ODEP technology to automatically and rapidly isolate S. cerevisiae for the detection of the invasive S. cerevisiae infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • S. Atıcı, A. Soysal, K. Karadeniz Cerit, Ş. Yılmaz, B. Aksu, G. Kıyan, M. Bakır, Medical Mycology Case Reports 15, 33 (2017)

  • A.G. Banerjee, S. Chowdhury, W. Losert, S.K. Gupta, IEEE Trans. Autom. Sci. Eng. 9, 669 (2012)

    Article  Google Scholar 

  • D.D. Byrne, A.C. Reboli, Current Clinical Microbiology Reports 4, 218 (2017)

    Article  Google Scholar 

  • P.Y. Chiou, A.T. Ohta, M.C. Wu, Nature 436, 370 (2005)

    Article  Google Scholar 

  • P.Y. Chu, C.H. Hsieh, C.R. Lin, M.H. Wu, Biosensors 10, (2020)

  • P.Y. Chu, C.J. Liao, C.H. Hsieh, H.M. Wang, W.P. Chou, P.H. Chen, M.H. Wu, Sens. Actuators B 283, 621 (2019)

  • M. Du, G. Li, Z. Wang, Y. Ge, F. Liu, Appl. Opt. 60, 2150 (2021)

    Article  Google Scholar 

  • H.L. Guo, Z.Y. Li, Science China: Physics. Mechanics and Astronomy 56, 2351 (2013)

    Article  Google Scholar 

  • E.A. Henslee, Electrophoresis 41, 1915 (2020)

    Article  Google Scholar 

  • S.H. Hung, S.C. Huang, G. bin Lee, Sensors (Switzerland) 13, 1965 (2013)

  • S. Hu, L. Cai, J. Lv, X. Jiang, Trans. Inst. Meas. Control. 42, 795 (2020)

    Article  Google Scholar 

  • X. Hu, P.H. Bessette, J. Qian, C.D. Meinhart, P.S. Daugherty, H.T. Soh, Marker-Specific Sorting of Rare Cells Using Dielectrophoresis (2005)

  • M.F. Landaburu, G.A. López Daneri, S. Relloso, L.J. Zarlenga, M.A. Vinante, M.T. Mujica, Rev. Argent. Microbiol. 52, 27 (2020)

  • B.H. Lapizco-Encinas, M. Rito-Palomares, Electrophoresis 28, 4521 (2007)

    Article  Google Scholar 

  • W. Liang, Y. Zhao, L. Liu, Y. Wang, Z. Dong, W. JungLi, G. bin Lee, X. Xiao, W. Zhang, PLoS ONE 9, (2014)

  • C.J. Liao, C.H. Hsieh, T.K. Chiu, Y.X. Zhu, H.M. Wang, F.C. Hung, W.P. Chou, M.H. Wu, Micromachines 9, (2018)

  • G. Li, M. Du, J. Yang, X. Luan, L. Liu, F. Liu, IEEE Sens. J. 21, 14627 (2021)

    Article  Google Scholar 

  • N. Liu, Y. Lin, Y. Peng, L. Xin, T. Yue, Y. Liu, C. Ru, S. Xie, L. Dong, H. Pu, H. Chen, W.J. Li, Y. Sun, IEEE Trans. Autom. Sci. Eng. 17, 1084 (2020)

    Article  Google Scholar 

  • A. Maleb, E. Sebbar, M. Frikh, S. Boubker, A. Moussaoui, A. el Mekkaoui, W. Khannoussi, G. Kharrasse, B. Belefquih, A. Lemnouer, Z. Ismaili, M. Elouennass, Journal De Mycologie Medicale 27, 266 (2017)

    Article  Google Scholar 

  • S.R. Sasikala R, A. Mangalam, G. Deepika, Res. J. Pharm. Biol. Chem. Sci. 8, 1505 (2017)

  • L.V. Mcfarland P. Bernasconi, Microb. Ecol. Health Dis. 6, 157 (1993)

  • A.T. Ohta, P.Y. Chiou, T.H. Han, J.C. Liao, U. Bhardwaj, E.R.B. McCabe, F. Yu, R. Sun, M.C. Wu, J. Microelectromech. Syst. 16, 491 (2007)

    Article  Google Scholar 

  • M. Padayachee, J. Visser, E. Viljoen, A. Musekiwa, R. Blaauw, South African Journal of Clinical Nutrition 32, 58 (2019)

    Article  Google Scholar 

  • P. Pais, V. Almeida, M. Yılmaz, M.C. Teixeira, Journal of Fungi 6, 1 (2020)

    Article  Google Scholar 

  • A. Pandey, Y. Gurbuz, V. Ozguz, J.H. Niazi, A. Qureshi, Biosens. Bioelectron. 91, 225 (2017)

    Article  Google Scholar 

  • Y.L. Qu, M.J. Zheng, W.F. Liang, Z.L. Dong, in Advanced Materials Research, pp. 842–847, (2012)

  • L. Shi, X. Shi, T. Zhou, Z. Liu, Z. Liu, S. Joo, Mod. Phys. Lett. B 34, (2020).

  • C. Souza Goebel, F. de Mattos Oliveira, L.C. Severo, Rev. Iberoam. Micol. 30, 205 (2013)

  • S. Tuukkanen, A. Kuzyk, J. Jussi Toppari, H. Häkkinen, V.P. Hytönen, E. Niskanen, M. Rinkiö, P. Törmä, Nanotechnology 18, (2007)

  • I. Ventoulis, T. Sarmourli, P. Amoiridou, P. Mantzana, M. Exindari, G. Gioula, T.A. Vyzantiadis, Journal of Fungi 6, 1 (2020)

    Article  Google Scholar 

  • H.Y. Wang, C.Y. Chen, P.Y. Chu, Y.X. Zhu, C.H. Hsieh, J.J. Lu, M.H. Wu, Sens Actuators B Chem. 307, (2020)

  • Y. Wu, D. Sun, W. Huang, N. Xi, IEEE/ASME Trans. Mechatron. 18, 706 (2013)

    Article  Google Scholar 

  • H. Zhang, K.K. Liu, J. R. Soc. Interface 5, 671 (2008)

    Article  Google Scholar 

  • M.J. Zheng, Y.L. Qu, Y.Z. Zhang, Z.L. Dong, Integr. Ferroelectr. 145, 24 (2013)

    Article  Google Scholar 

  • M. C. Zhong, X. bin Wei, J. H. Zhou, Z. Q. Wang, Y.M. Li, Nat. Commun. 4, (2013)

  • X. Zhu, H. Yi, Z. Ni, Biomicrofluidics 4, (2010)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61903157 and No. 61833007) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20180592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongxin Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Du, M., Liu, F. et al. Label-free rapid isolation of saccharomyces cerevisiae with optically induced dielectrophoresis-based automatic micromanipulation. Biomed Microdevices 23, 44 (2021). https://doi.org/10.1007/s10544-021-00582-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00582-z

Keywords

Navigation