Skip to main content

Advertisement

Log in

A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidic, flow cytometry, and immunomagnetic methods for cancer cell isolation have heavily relied on the Epithelial Cellular Adhesion Molecule (EpCAM) for affinity separation. While EpCAM has been used extensively for circulating tumor cell isolation, it cannot be used to isolate non-epithelial cells. The human transferrin receptor (CD71) can also be used for cancer cell isolation and has the advantage that as an affinity target it can separate virtually any cancer cell type, regardless of disease origin. However, direct comparison of the capture ability of EpCAM and CD71 has not been reported previously. In this work, cell capture with both EpCAM and CD71 were studied using a novel higher-throughput herringbone cell separation microfluidic device. Five separation chip models were designed and the one with the highest capture efficiency (average 90 ± 10%) was chosen to compare antigen targets for cell capture. Multiple cancer cell lines including CCRF-CEM, PC-3 and MDA-MB-231 were tested for cell capture performance using both ligands (anti-CD71 and anti-EpCAM) in the optimized chip design. PC-3 and MDA-MB-231 cells were spiked into blood at concentrations ranging from 0.5%–10%. PC-3 cells were separated by anti-CD71 and anti-EpCAM with 32–37% and 31–50% capture purity respectively, while MDA-MB-231 were separated with 35–53% and 33–56% capture purity using anti-CD71 and anti-EpCAM for all concentrations. The enrichment factor for the lowest concentrations of cells in blood ranged from 66-74X. The resulting enrichment of cancer cells shows that anti-CD71 was found to be statistically similar to anti-EpCAM for epithelial cancer cells, while anti-CD71 can be further used for non-epithelial cells, where anti-EpCAM cannot be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M. Asadian-Birjand, C. Biglione, J. Bergueiro, A. Cappelletti, C. Rahane, G. Chate, J. Khandare, B. Klemke, M.C. Strumia, M. Calderón, Transferrin decorated thermoresponsive nanogels as magnetic trap devices for circulating tumor cells. Macromol. Rapid Commun. 37(5), 439–445 (2016)

    Article  Google Scholar 

  • L. Bai, Y. Du, J. Peng, Y. Liu, Y. Wang, Y. Yang, C. Wang, Peptide-based isolation of circulating tumor cells by magnetic nanoparticles. J. Mater. Chem. B. 2(26), 4080–4088 (2014)

    Article  Google Scholar 

  • F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  • P. Chen, Y.-Y. Huang, K. Hoshino, X. Zhang, Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips. Lab Chip 14(3), 446–458 (2014)

    Article  Google Scholar 

  • M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L.W. Terstappen, Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351(8), 781–791 (2004)

    Article  Google Scholar 

  • H. Cui, B. Wang, W. Wang, Y. Hao, C. Liu, K. Song, S. Zhang, S. Wang, Frosted slides decorated with silica nanowires for detecting circulating tumor cells from prostate cancer patients. ACS Appl. Mater. Interfaces. 10(23), 19545–19553 (2018)

    Article  Google Scholar 

  • T.R. Daniels, T. Delgado, J.A. Rodriguez, G. Helguera, M.L. Penichet, The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121(2), 144–158 (2006)

    Article  Google Scholar 

  • I. De Domenico, D.M. Ward, J. Kaplan, Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol. 9(1), 72 (2008)

    Article  Google Scholar 

  • H. Drakesmith, E. Nemeth, T. Ganz, Ironing out ferroportin. Cell Metab. 22(5), 777–787 (2015)

    Article  Google Scholar 

  • M.T. Gabriel, L.R. Calleja, A. Chalopin, B. Ory, D. Heymann, Circulating tumor cells: a review of non–EpCAM-based approaches for cell enrichment and isolation. Clin. Chem. 62(4), 571–581 (2016)

    Article  Google Scholar 

  • Y. Gao, W. Li, Y. Zhang, D. Pappas, Cell Affinity Separations on Microfluidic Devices (Springer, In Affinity Chromatography, 2015), pp. 55–65

    Google Scholar 

  • W.A. Jefferies, M.R. Brandon, S.V. Hunt, A.F. Williams, K.C. Gatter, D.Y. Mason, Transferrin receptor on endothelium of brain capillaries. Nature 312(5990), 162–163 (1984)

    Article  Google Scholar 

  • A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  • G. Khanal, S. Hiemstra, D. Pappas, Probing hypoxia-induced staurosporine resistance in prostate cancer cells with a microfluidic culture system. Analyst 139(13), 3274–3280 (2014)

    Article  Google Scholar 

  • S. Kim, S.-I. Han, M.-J. Park, C.-W. Jeon, Y.-D. Joo, I.-H. Choi, K.-H. Han, Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal. Chem. 85(5), 2779–2786 (2013)

    Article  Google Scholar 

  • Y.J. Kim, Y.-T. Kang, Y.-H. Cho, Poly (ethylene glycol)-modified tapered-slit membrane filter for efficient release of captured viable circulating tumor cells. Anal. Chem. 88(16), 7938–7945 (2016)

    Article  Google Scholar 

  • R. Königsberg, E. Obermayr, G. Bises, G. Pfeiler, M. Gneist, F. Wrba, M. de Santis, R. Zeillinger, M. Hudec, C. Dittrich, Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol. 50(5), 700–710 (2011)

    Article  Google Scholar 

  • P. Li, Y. Gao, D. Pappas, Negative enrichment of target cells by microfluidic affinity chromatography. Anal. Chem. 83(20), 7863–7869 (2011)

    Article  Google Scholar 

  • W. Li, Y. Gao, D. Pappas, A complementary method to CD4 counting: measurement of CD4+/CD8+ T lymphocyte ratio in a tandem affinity microfluidic system. Biomed. Microdevices 17(6), 113 (2015)

    Article  Google Scholar 

  • W. Li, Y. Zhang, C.P. Reynolds, D. Pappas, Microfluidic separation of lymphoblasts for the isolation of acute lymphoblastic leukemia using the human transferrin receptor as a capture target. Anal. Chem. 89(14), 7340–7347 (2017)

    Article  Google Scholar 

  • Q. Liu, M. Wang, Y. Hu, H. Xing, X. Chen, Y. Zhang, Y. Chen, D. Bu, P. Zhu, The Usefulness of CD71 Expression by Flow Cytometry in the Diagnosis of Acute Leukemia. Am. Soc. Hematol. (2012)

  • V.J. Lyons, A. Helms, D. Pappas, The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand. Anal. Chim. Acta 1076, 154–161 (2019)

    Article  Google Scholar 

  • V.J. Lyons, D. Pappas, Affinity separation and subsequent terminal differentiation of acute myeloid leukemia cells using the human transferrin receptor (CD71) as a capture target. Analyst 144(10), 3369–3380 (2019)

    Article  Google Scholar 

  • D.K. Marsee, G.S. Pinkus, H. Yu, CD71 (transferrin receptor) an effective marker for erythroid precursors in bone marrow biopsy specimens. Am. J. Clin. Pathol. 134(3), 429–435 (2010)

    Article  Google Scholar 

  • C. Mata, E. Longmire, D. McKenna, K. Glass, A. Hubel, Cell motion and recovery in a two-stream microfluidic device. Microfluid. Nanofluid. 8(4), 457–465 (2010)

    Article  Google Scholar 

  • D. Pappas, Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems. Analyst 141(2), 525–535 (2016)

    Article  Google Scholar 

  • D. Pappas, Practical cell analysis. Wiley Online Library: (2010)

  • J.-M. Park, J.-Y. Lee, J.-G. Lee, H. Jeong, J.-M. Oh, Y.J. Kim, D. Park, M.S. Kim, H.J. Lee, J.H. Oh, Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem. 84(17), 7400–7407 (2012)

    Article  Google Scholar 

  • S.A. Rahman, M. Yokoyama, S. Nishio, M. Takeuchi, Flow cytometric evaluation of transferrin receptor in transitional cell carcinoma. Urol. Res. 25(5), 325–329 (1997)

    Article  Google Scholar 

  • K. Rittenhouse-Diakun, H.V. Leengoed, J. Morgan, E. Hryhorenko, G. Paszkiewicz, J. Whitaker, A. Oseroff, The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor δ-aminolevulinic acid (ALA). Photochem. Photobiol. 61(5), 523–528 (1995)

    Article  Google Scholar 

  • Y. Shen, X. Li, D. Dong, B. Zhang, Y. Xue, P. Shang, Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 8(6), 916 (2018)

    Google Scholar 

  • J.E. Shindelman, A.E. Ortmeyer, H.H. Sussman, Demonstration of the transferrin receptor in human breast cancer tissue. Potential marker for identifying dividing cells. Int. J. Cancer 27(3), 329–334 (1981)

    Article  Google Scholar 

  • R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019)

    Article  Google Scholar 

  • A. Sin, S.K. Murthy, A. Revzin, R.G. Tompkins, M. Toner, Enrichment using antibody-coated microfluidic chambers in shear flow: Model mixtures of human lymphocytes. Biotechnol. Bioeng. 91(7), 816–826 (2005)

    Article  Google Scholar 

  • G. Spizzo, D. Fong, M. Wurm, C. Ensinger, P. Obrist, C. Hofer, G. Mazzoleni, G. Gastl, P. Went, EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. J. Clin. Pathol. 64(5), 415–420 (2011)

    Article  Google Scholar 

  • K. Sterzyńska, B. Kempisty, P. Zawierucha, M. Zabel, Analysis of the specificity and selectivity of anti-EpCAM antibodies in breast cancer cell lines. Folia Histochem. Cytobiol. 50(4), 534–541 (2012)

    Article  Google Scholar 

  • S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Jr. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U.S.A. 107(43), 18392–18397 (2010)

    Article  Google Scholar 

  • A.D. Stroock, S.K. Dertinger, A. Ajdari, I. Mezić, H.A. Stone, G.M. Whitesides, Chaotic mixer for microchannels. Science 295(5555), 647–651 (2002)

    Article  Google Scholar 

  • L. Tao, K. Zhang, Y. Sun, B. Jin, Z. Zhang, K. Yang, Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens. Bioelectron. 35(1), 186–192 (2012)

    Article  Google Scholar 

  • B.T. van der Gun, L.J. Melchers, M.H. Ruiters, L.F. de Leij, P.M. McLaughlin, M.G. Rots, EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31(11), 1913–1921 (2010)

    Article  Google Scholar 

  • S. Wang, S. Sohrabi, J. Xu, J. Yang, Y. Liu, Geometry design of herringbone structures for cancer cell capture in a microfluidic device. Microfluid. Nanofluid. 20(11), 148 (2016)

    Article  Google Scholar 

  • P.T. Went, A. Lugli, S. Meier, M. Bundi, M. Mirlacher, G. Sauter, S. Dirnhofer, Frequent EpCam protein expression in human carcinomas. Hum. Pathol. 35(1), 122–128 (2004)

    Article  Google Scholar 

  • B. Wickramaratne, M. Ivey, D. Pappas, Isolation of proliferating cells from whole blood using Human Transferrin Receptor in a two-stage separation system. Talanta 204, 731–738 (2019)

    Article  Google Scholar 

  • B. Wickramaratne, D. Pappas, Tandem microfluidic chip isolation of prostate and breast cancer cells from simulated liquid biopsies using CD71 as an affinity ligand. RSC Adv. 10(54), 32628–32637 (2020)

    Article  Google Scholar 

  • D. Woo, M. Yu, Circulating tumor cells as “liquid biopsies” to understand cancer metastasis. Transl. Res. 201, 128–135 (2018)

    Article  Google Scholar 

  • M. Yüce, N. Ullah, H. Budak, Trends in aptamer selection methods and applications. Analyst 140(16), 5379–5399 (2015)

    Article  Google Scholar 

  • Y. Zhang, W. Li, Y. Zhou, A. Johnson, A. Venable, A. Hassan, J. Griswold, D. Pappas, Detection of sepsis using CD64 expression in a microfluidic cell separation device. Analyst 143, 241–249 (2018)

    Article  Google Scholar 

  • Y. Zhang, V. Lyons, D. Pappas, Fundamentals of affinity cell separations. Electrophoresis 39(5–6), 732–741 (2018)

    Article  Google Scholar 

  • Y. Zhang, D. Pappas, Microfluidic cell surface antigen expression analysis using a single antibody type. Analyst 141(4), 1440–1447 (2016)

    Article  Google Scholar 

  • Y. Zhang, Y. Zhou, W. Li, V. Lyons, A. Johnson, A. Venable, J. Griswold, D. Pappas, Multiparameter affinity microchip for early sepsis diagnosis based on CD64 and CD69 expression and cell capture. Anal. Chem. 90(12), 7204–7211 (2018)

    Article  Google Scholar 

  • Y. Zhou, Z. Dong, H. Andarge, W. Li, D. Pappas, Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation. Analyst 145(1), 257–267 (2020)

    Article  Google Scholar 

  • Y. Zhou, Y. Zhang, A. Johnson, A. Venable, J. Griswold, D. Pappas, Combined CD25, CD64, and CD69 biomarker panel for flow cytometry diagnosis of sepsis. Talanta 191, 216–221 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Cancer Research and Prevention Institute of Texas (CPRIT RP180862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Pappas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 521 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, Y., Wickramaratne, B. et al. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells. Biomed Microdevices 23, 28 (2021). https://doi.org/10.1007/s10544-021-00566-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00566-z

Keywords

Navigation