Skip to main content
Log in

3D printed alginate bead generator for high-throughput cell culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Alginate hydrogel beads are a common platform for generating 3D cell cultures in biomedical research. Simple methods for bead generation using a manual pipettor or syringe are low-throughput and produce beads showing high variability in size and shape. To address these challenges, we designed a 3D printed bead generator that uses an airflow to cleave beads from a stream of hydrogel solution. The performance of the proposed alginate bead generator was evaluated by changing the volume flow rates of alginate (QAlg) and air (QA), the diameter of device nozzle (d) and the concentration of alginate gel solution (C). We identified that the diameter of beads (D = 0.9 -2.8 mm) can be precisely controlled by changing QA and d. Also the bead generation frequency (f) can be tuned by changing QAlg. Finally, we demonstrated that viability and biological function (pericellular matrix deposition) of chondrocytes were not adversely affected by high f using this bead generator. Because 3D printing is becoming a more accessible technique, our unique design will allow greater access to average biomedical research laboratories, STEM education and industries in cost- and time-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • K. Alessandri, M. Feyeux, B. Gurchenkov, C. Delgado, A. Trushko, K.-H. Krause, D. Vignjević, P. Nassoy, A. Roux, A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab. Chip. 16, 1593–1604 (2016)

    Article  Google Scholar 

  • K. Alessandri, B.R. Sarangi, V.V. Gurchenkov, B. Sinha, T.R. Kießling, L. Fetler, F. Rico, S. Scheuring, C. Lamaze, A. Simon, S. Geraldo, D. Vignjević, H. Doméjean, L. Rolland, A. Funfak, J. Bibette, N. Bremond, P. Nassoy, Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc. Natl. Acad. Sci. U.S.A. 110, 14843–14848 (2013)

    Article  Google Scholar 

  • X. Bai, M. Gao, S. Syed, J. Zhuang, X. Xu, X.-Q. Zhang, Bioactive hydrogels for bone regeneration. Bioact. Mater. 3, 401–417 (2018)

    Article  Google Scholar 

  • B.M. Baker, C.S. Chen, Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J. Cell. Sci. 125, 3015–3024 (2012)

    Google Scholar 

  • S.J. Bidarra, C.C. Barrias, P.L. Granja, Injectable alginate hydrogels for cell delivery in tissue engineering. Acta. Biomater. 10, 1646–1662 (2014)

    Article  Google Scholar 

  • E.-S. Chan, T.-K. Lim, W.-P. Voo, R. Pogaku, B.T. Tey, Z. Zhang, Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9, 228–234 (2011)

    Article  Google Scholar 

  • S.H. Ching, N. Bansal, B. Bhandari, Alginate gel particles–A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 57, 1133–1152 (2017)

    Article  Google Scholar 

  • C.-H. Choi, J.-H. Jung, Y.W. Rhee, D.-P. Kim, S.-E. Shim, C.-S. Lee, Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed. Microdevices 9, 855–862 (2007)

    Article  Google Scholar 

  • C. Cramer, P. Fischer, E.J. Windhab, Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 59, 3045–3058 (2004)

    Article  Google Scholar 

  • F. Davarcı, D. Turan, B. Ozcelik, D. Poncelet, The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocoll. 62, 119–127 (2017)

    Article  Google Scholar 

  • P. Del Gaudio, P. Colombo, G. Colombo, P. Russo, F. Sonvico, Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int. J. Pharm. 302, 1–9 (2005)

    Article  Google Scholar 

  • A.G. Erickson, T.D. Laughlin, S.M. Romereim, C.N. Sargus-Patino, A.K. Pannier, A.T. Dudley, A Tunable, Three-Dimensional in Vitro Culture Model of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds (Tissue Eng, Part A, 2017).

    Google Scholar 

  • L.P. Ferreira, V.M. Gaspar, J.F. Mano, Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta. Biomater. 75, 11–34 (2018)

    Article  Google Scholar 

  • P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab. Chip. 6, 437–446 (2006)

    Article  Google Scholar 

  • D. J. Hadley, K. T. Campbell, M. H. Gabriel and E. A. Silva. Open-source 3D printed air-jet for generating monodispersed alginate microhydrogels. bioRxiv 804849, (2019)

  • A.G. Håti, D.C. Bassett, J.M. Ribe, P. Sikorski, D.A. Weitz, B.T. Stokke, Versatile, cell and chip friendly method to gel alginate in microfluidic devices. Lab. Chip. 16, 3718–3727 (2016)

    Article  Google Scholar 

  • S. Iwamoto, K. Nakagawa, S. Sugiura, M. Nakajima, Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification. AAPS PharmSciTech 3, 72–76 (2002)

    Article  Google Scholar 

  • D. Jain, D. Bar-Shalom, Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 40, 1576–1584 (2014)

    Article  Google Scholar 

  • B.-B. Lee, P. Ravindra, E.-S. Chan, A CRITICAL REVIEW: SURFACE AND INTERFACIAL TENSION MEASUREMENT BY THE DROP WEIGHT METHOD. Chem. Eng. Commun. 195, 889–924 (2008)

    Article  Google Scholar 

  • B.-B. Lee, P. Ravindra, E.-S. Chan, Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Technol. 36, 1627–1642 (2013)

    Google Scholar 

  • W. Lee, N. Kalashnikov, S. Mok, R. Halaoui, E. Kuzmin, A.J. Putnam, S. Takayama, M. Park, L. McCaffrey, R. Zhao, R.L. Leask, C. Moraes, Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat. Commun. 10, 144 (2019)

    Article  Google Scholar 

  • R. Martinez-Duarte and M. Madou. SU-8 photolithography and its impact on microfluidics. Microfluid. Nanofluid. Handb. 231–268, (2011).

  • Y.T. Matsunaga, Y. Morimoto, S. Takeuchi, Molding Cell Beads for Rapid Construction of Macroscopic 3D Tissue Architecture. Adv. Mater. 23, H90–H94 (2011)

    Article  Google Scholar 

  • D.J. McClements, Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocoll. 68, 238–245 (2017)

    Article  Google Scholar 

  • E. Mohagheghian, J. Luo, J. Chen, G. Chaudhary, J. Chen, J. Sun, R.H. Ewoldt, N. Wang, Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nat. Commun. 9, 1878 (2018)

    Article  Google Scholar 

  • Y. Morimoto, W.-H. Tan, S. Takeuchi, Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomed. Microdevices 11, 369–377 (2009)

    Article  Google Scholar 

  • U. Prüsse, L. Bilancetti, M. Bučko, B. Bugarski, J. Bukowski, P. Gemeiner, D. Lewińska, V. Manojlovic, B. Massart, C. Nastruzzi, V. Nedovic, D. Poncelet, S. Siebenhaar, L. Tobler, A. Tosi, A. Vikartovská, K.-D. Vorlop, Comparison of different technologies for alginate beads production. Chem. Pap. 62, 364 (2008)

    Article  Google Scholar 

  • Y. Senuma, C. Lowe, Y. Zweifel, J.G. Hilborn, I. Marison, Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioeng. 67, 616–622 (2000)

    Article  Google Scholar 

  • R.F. Shepherd, J.C. Conrad, S.K. Rhodes, D.R. Link, M. Marquez, D.A. Weitz, J.A. Lewis, Microfluidic Assembly of Homogeneous and Janus Colloid-Filled Hydrogel Granules. Langmuir 22, 8618–8622 (2006)

    Article  Google Scholar 

  • T. Suksamran, P. Opanasopit, T. Rojanarata, T. Ngawhirunpat, U. Ruktanonchai, P. Supaphol, Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J. Microencapsulation 26, 563–570 (2009)

    Article  Google Scholar 

  • W.-H. Tan, S. Takeuchi, Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation. Adv. Mater. 19, 2696–2701 (2007)

    Article  Google Scholar 

  • S.K. Tang, G.M. Whitesides, Basic microfluidic and soft lithographic techniques, in Optofluidics: Fundamentals, Devices and Applications. ed. by Y. Fainman, L.P. Lee, D. Psaltis, C. Yang (McGraw-Hill, New York, 2010), pp. 7–31

    Google Scholar 

  • S. Tendulkar, S.-H. Mirmalek-Sani, C. Childers, J. Saul, E.C. Opara, M.K. Ramasubramanian, A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed. Microdevices 14, 461–469 (2012)

    Article  Google Scholar 

  • N. Träber, K. Uhlmann, S. Girardo, G. Kesavan, K. Wagner, J. Friedrichs, R. Goswami, K. Bai, M. Brand, C. Werner, D. Balzani, J. Guck, Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development. Sci. Rep. 9, 17031 (2019)

    Article  Google Scholar 

  • A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz, Dripping to Jetting Transitions in Coflowing Liquid Streams. Phys. Rev. Lett. 99, 094502 (2007)

    Article  Google Scholar 

  • S. Utech, R. Prodanovic, A.S. Mao, R. Ostafe, D.J. Mooney, D.A. Weitz, Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture. Adv. Healthcare Mater. 4, 1628–1633 (2015)

    Article  Google Scholar 

  • M. Workamp, S. Alaie, J.A. Dijksman, Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles. Rev. Sci. Instrum. 87, 125113 (2016)

    Article  Google Scholar 

  • Y. Xia, G.M. Whitesides, SOFT LITHOGRAPHY. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  • L. Yu, C. Ni, S.M. Grist, C. Bayly, K.C. Cheung, Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening. Biomed. Microdevices 17, 33 (2015)

    Article  Google Scholar 

  • H. Zhang, E. Tumarkin, R.M.A. Sullan, G.C. Walker, E. Kumacheva, Exploring Microfluidic Routes to Microgels of Biological Polymers. Macromol. Rapid Commun. 28, 527–538 (2007)

    Article  Google Scholar 

  • J. Zhang, K.L. Tan, G.D. Hong, L.J. Yang, H.Q. Gong, Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11, 20–26 (2000)

    Article  Google Scholar 

  • Y. Zhang, Y. Yong, D. An, W. Song, Q. Liu, L. Wang, Y. Pardo, V.R. Kern, P.H. Steen, W. Hong, Z. Liu, M. Ma, A drip-crosslinked tough hydrogel. Polymer 135, 327–330 (2018)

    Article  Google Scholar 

  • Z.-Q. Zhang, Y.H. Mori, Formulation of the Harkins-Brown correction factor for drop-volume description. Ind. Eng. Chem. Res. 32, 2950–2952 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bin Duan for providing access to the 3D printer. This study was supported by the University of Nebraska Medical Center (UNMC), and grant AR070242 from the NIH/NIAMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Dudley.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 21100 KB)

Supplementary file2 (PDF 181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Greer, S.E., Kuss, M.A. et al. 3D printed alginate bead generator for high-throughput cell culture. Biomed Microdevices 23, 22 (2021). https://doi.org/10.1007/s10544-021-00561-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00561-4

Keywords

Navigation