I. About, J. Camps, T.A. Mitsiadis, M.J. Bottero, W. Butler, J.C. Franquin, Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. J. Biomed. Mater. Res. 63(4), 418–423 (2002). https://doi.org/10.1002/jbm.10253
Article
Google Scholar
D.R. Bienek, S.A. Frukhtbeyn, A.A. Giuseppetti, U.C. Okeke, R.M. Pires, J.M. Antonucci, D. Skrtic, Ionic dimethacrylates for antimicrobial and remineralizing dental composites. Ann. Dent. Oral Disor. 1, 108 (2018a)
Google Scholar
D.R. Bienek, S.A. Frukhtbeyn, A.A. Giuseppetti, U.C. Okeke, D. Skrtic, Antimicrobial monomers for polymeric dental restoratives: Cytotoxicity and physicochemical properties. J Funct Biomat 9(1), 20 (2018b). https://doi.org/10.3390/jfb9010020
Article
Google Scholar
U. Bilitewski, M. Genrich, S. Kadow, G. Mersal, Biochemical analysis with microfluidic systems. Anal. Bioanal. Chem. 377(3), 556–569 (2003). https://doi.org/10.1007/s00216-003-2179-4
Article
Google Scholar
S. Bouillaguet, M. Virgillito, W. Jc, B. Ciucchi, J. Holz, The influence of dentine permeability on cytotoxicity of four dentine bonding systems, in vitro. J. Oral Rehabil. 25, 45–51 (1998). https://doi.org/10.1046/j.1365-2842.1998.00205.x
Article
Google Scholar
I.P. Caldas, G.G. Alves, I.B. Barbosa, P. Scelza, F. de Noronha, M.Z. Scelza, In vitro cytotoxicity of dental adhesives: A systematic review. Dent. Mater. 35(2), 195–205 (2019). https://doi.org/10.1016/j.dental.2018.11.028
Article
Google Scholar
K.-H. Cho, S.-K. Yu, M.-H. Lee, D.-S. Lee, H.-J. Kim, Histological assessment of the palatal mucosa and greater palatine artery with reference to subepithelial connective tissue grafting. Anat. cell biol. 46(3), 171–176 (2013). https://doi.org/10.5115/acb.2013.46.3.171
Article
Google Scholar
M. Falconi, G. Teti, M. Zago, S. Pelotti, L. Breschi, G. Mazzotti, Effects of HEMA on type I collagen protein in human gingival fibroblasts. Cell Biol. Toxicol. 23(5), 313–322 (2007). https://doi.org/10.1007/s10565-006-0148-3
Article
Google Scholar
C.M. Franca, A. Tahayeri, N.S. Rodrigues, S. Ferdosian, R.M. Puppin Rontani, G. Sereda, et al., The tooth on-a-chip: A microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip 20(2), 405–413 (2020). https://doi.org/10.1039/c9lc00915a
Article
Google Scholar
S. Gröger, J. Michel, J. Meyle, Establishment and characterization of immortalized human gingival keratinocyte cell lines. J. Periodontal Res. 43(6), 604–614 (2008). https://doi.org/10.1111/j.1600-0765.2007.01019.x
Article
Google Scholar
C.T. Hanks, R.G. Craig, M.L. Diehl, D.H. Pashley, Cytotoxicity of dental composites and other materials in a new in vitro device. J. Oral. Pathol. 17(8), 396–403 (1988). https://doi.org/10.1111/j.1600-0714.1988.tb01304.x
Article
Google Scholar
C.T. Hanks, S.E. Strawn, J.C. Wataha, R.G. Craig, Cytotoxic effects of resin components on cultured mammalian fibroblasts. J. Dent. Res. 70(11), 1450–1455 (1991). https://doi.org/10.1177/00220345910700111201
Article
Google Scholar
H.C. Hildebrand, L. Hakkinen, C.B. Wiebe, H.S. Larjava, Characterization of organotypic keratinocyte cultures on de-epithelialized bovine tongue mucosa. Histol Histopathol 17(1), 151–163 (2002). https://doi.org/10.14670/hh-17.151
Article
Google Scholar
P. Hu, S.A. Rooholghodos, L.H. Pham, K.L. Ly, X. Luo, Interfacial Electrofabrication of freestanding biopolymer membranes with distal electrodes. Langmuir 36(37), 11034–11043 (2020). https://doi.org/10.1021/acs.langmuir.0c01894
Article
Google Scholar
R.P. Illeperuma, Y.J. Park, J.M. Kim, J.Y. Bae, Z.M. Che, H.K. Son, et al., Immortalized gingival fibroblasts as a cytotoxicity test model for dental materials. J. Mater. Sci. Mater. Med. 23(3), 753–762 (2012). https://doi.org/10.1007/s10856-011-4473-6
Article
Google Scholar
K. Izumi, H. Kato, S. Feinberg, Tissue Engineered Oral Mucosa, in Stem Cell Biology and Tissue Engineering in Dental Sciences, vol 53 (Academic Press, Elsevier, Cambridge, 2015), pp. 721–731. https://doi.org/10.1016/B978-0-12-397157-9.00077-1
G. Kaufman, D. Skrtic, Morphological and kinetic study of oral keratinocytes assembly on reconstituted basement membrane: Effect of TEGDMA. Arch. Oral Biol. 104, 103–111 (2019). https://doi.org/10.1016/j.archoralbio.2019.05.019
Article
Google Scholar
S. Krifka, G. Spagnuolo, G. Schmalz, H. Schweikl, A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 34(19), 4555–4563 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.019
Article
Google Scholar
R.H.W. Lam, X. Cui, W. Guo, T. Thorsen, High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics. Lab Chip 16(9), 1652–1662 (2016). https://doi.org/10.1039/C6LC00072J
Article
Google Scholar
I. Lignos, R. Maceiczyk, A.J. deMello, Microfluidic technology: Uncovering the mechanisms of Nanocrystal nucleation and growth. Acc. Chem. Res. 50(5), 1248–1257 (2017). https://doi.org/10.1021/acs.accounts.7b00088
Article
Google Scholar
L. Loan Khanh, N. Thanh Truc, N. Tan Dat, N. Thi Phuong Nghi, V. van Toi, N. Thi Thu Hoai, et al., Gelatin-stabilized composites of silver nanoparticles and curcumin: Characterization, antibacterial and antioxidant study. Sci. Technol. Adv. Mater. 20(1), 276–290 (2019). https://doi.org/10.1080/14686996.2019.1585131
Article
Google Scholar
Ly, K., Raub, C. B., & Luo, X. (2020a). Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as template. Mater. Adv., 34-44. doi:https://doi.org/10.1039/D0MA00073F
K. Ly, S. Rooholghodos, C. Rahimi, B. Rahimi, D. R. Bienek, G. Kaufman, C. B. Raub, X. Luo, Oral mucosa-chip as an alternative platform to evaluate the impacts of dental monomers. Paper presented at The 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences (2020b), pp. 953–954
K. Moharamzadeh, Oral mucosa tissue engineering, in Biomaterials for Oral and Dental Tissue Engineering. (Woodhead Publishing/Elsevier, Cambridge, 2017), vol 14 pp. 223–244. https://doi.org/10.1016/B978-0-08-100961-1.00014-1
K. Moharamzadeh, I.M. Brook, R. Van Noort, A.M. Scutt, M.H. Thornhill, Tissue-engineered oral mucosa: A review of the scientific literature. J. Dent. Res. 86(2), 115–124 (2007). https://doi.org/10.1177/154405910708600203
Article
Google Scholar
L. Niu, H. Zhang, Y. Liu, Y. Wang, A. Li, R. Liu, et al., Microfluidic Chip for Odontoblasts in vitro. ACS Biomater. Sci. Eng. 5(9), 4844–4851 (2019). https://doi.org/10.1021/acsbiomaterials.9b00743
Article
Google Scholar
C. Rahimi, B. Rahimi, D. Padova, S.A. Rooholghodos, D.R. Bienek, X. Luo, et al., Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics 12(5), 054106 (2018). https://doi.org/10.1063/1.5048938
Article
Google Scholar
G. Schmalz, S. Krifka, H. Schweikl, Toll-like receptors, LPS, and dental monomers. Adv. Dent. Res. 23(3), 302–306 (2011). https://doi.org/10.1177/0022034511405391
Article
Google Scholar
H. Schweikl, G. Spagnuolo, G. Schmalz, Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 85, 870–877 (2006a). https://doi.org/10.1177/154405910608501001
Article
Google Scholar
H. Schweikl, G. Spagnuolo, G. Schmalz, Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 85(10), 870–877 (2006b). https://doi.org/10.1177/154405910608501001
Article
Google Scholar
J. Szczepanska, T. Poplawski, E. Synowiec, E. Pawlowska, C.J. Chojnacki, J. Chojnacki, J. Blasiak, 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation. Mol. Biol. Rep. 39(2), 1561–1574 (2012). https://doi.org/10.1007/s11033-011-0895-y
Article
Google Scholar
G. Teti, G. Mazzotti, M. Zago, M. Ortolani, L. Breschi, S. Pelotti, et al., HEMA down-regulates procollagen alpha1 type I in human gingival fibroblasts. J. Biomed. Mater. Res. A 90(1), 256–262 (2009). https://doi.org/10.1002/jbm.a.32082
Article
Google Scholar
G. Teti, G. Orsini, V. Salvator, S. Focaroli, M.C. Mazzotti, A. Ruggeri, M. Mattioli-Belmonte, M. Falconi, HEMA but not TEGDMA induces autophagy in human gingival fibroblasts. Front. Physiol. 6(275) (2015). https://doi.org/10.3389/fphys.2015.00275
W.M.W. Tra, J.W. van Neck, S.E.R. Hovius, G.J.V.M. van Osch, S. Perez-Amodio, Characterization of a three-dimensional mucosal equivalent: Similarities and differences with native Oral mucosa. Cells Tissues Organs 195(3), 185–196 (2012). https://doi.org/10.1159/000324918
Article
Google Scholar
H.A. Tran, K.L. Ly, K.E. Fox, P.A. Tran, T.H. Nguyen, Immobilization of antimicrobial silver and antioxidant flavonoid as a coating for wound dressing materials. Int. J. Nanomedicine 14, 9929–9939 (2019). https://doi.org/10.2147/ijn.S230214
Article
Google Scholar
Vardar-Sengul, S., Arora, S., Baylas, H., & Mercola, D. (2009). Expression Profile of Human Gingival Fibroblasts Induced by Interleukin-1β Reveals Central Role of Nuclear Factor-Kappa B in Stabilizing Human Gingival Fibroblasts During Inflammation. 80(5), 833–849. doi:https://doi.org/10.1902/jop.2009.080483
J. Wu, Z. He, Q. Chen, J.-M. Lin, Biochemical analysis on microfluidic chips. TrAC Trends Anal. Chem. 80, 213–231 (2016). https://doi.org/10.1016/j.trac.2016.03.013
Article
Google Scholar