Skip to main content
Log in

Cell-encapsulated chitosan-collagen hydrogel hybrid nerve guidance conduit for peripheral nerve regeneration

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Nerve guidance conduits (NGCs) composed of biocompatible polymers have been attracting attention as an alternative for autograft surgery in peripheral nerve regeneration. However, the nerve tissues repaired by NGCs often tend to be inadequate and lead to functional failure because of the lack of cellular supports. This paper presents a chitosan-collagen hydrogel conduit containing cells to induce peripheral nerve regeneration with cellular support. The conduit composed of two coaxial hydrogel layers of chitosan and collagen is simply made by molding and mechanical anchoring attachment with holes made on the hydrogel tube. A chitosan layer strengthens the conduit mechanically, and a collagen layer provides a scaffold for cells supporting the axonal extension. The conduits of different diameters (outer diameter approximately 2–4 mm) are fabricated. The conduit is bioabsorbable with lysozyme, and biocompatible even under bio absorption. In the neuron culture demonstration, the conduit containing Schwann cells induced the extension of the axon of neurons directed to the conduit. Our easily fabricated conduit could help the high-quality regeneration of peripheral nerves and contribute to the nerve repair surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

References

  • R. J. E. Armstrong, C. N. Svendsen, Cell Transplant., 9 (2000)

  • M.G. Burnett, E.L. Zager, J. Neurosurg. 16, 5 (2004)

    Google Scholar 

  • W. Daly, L. Yao, D. Zeugolis, A. Windebank, A. Pandit, J. R. Soc. Interface 9, 67 (2011)

    Google Scholar 

  • G.R.D. Evans, Anat. Rec. 263, 4 (2001)

    Article  Google Scholar 

  • G.R.D. Evans, K. Brandt, S. Katz, P. Chauvin, L. Otto, M. Bogle, B. Wang, R.K. Meszlenyi, L.C. Lu, A.G. Mikos, C.W. Patrick, Biomaterials 23, 3 (2002)

    Google Scholar 

  • A. Faroni, S. A. Mobasseri, P. J. Kingham, A. J. Reid, Adv. Drug Delivery Rev., 82–83 (2015)

  • D.S. Forman, R.A. Berenberg, Brain Res. 156, 2 (1978)

    Article  Google Scholar 

  • S.P. Frostick, Q. Yin, G.J. Kemp, Microsurgery 18, 7 (1998)

    Google Scholar 

  • S. Itai, H. Tajima, H. Onoe, Biofabrication 11, 1 (2018)

    Article  Google Scholar 

  • S. Itoh, I. Yamaguchi, M. Suzuki, S. Ichinose, K. Takakuda, H. Kobayashi, K. Shinomiya, J. Tanaka, Brain Res. 993, 1–2 (2003)

    Article  Google Scholar 

  • S. Li, S.J. Archibald, C. Krarup, R.D. Madison, Clin. Mater. 9, 3–4 (1992)

    Article  Google Scholar 

  • Y.T. Liu, X.J. Zhou, J. Ma, Y.B. Ge, X. Cao, J. Spinal Cord Med. 38, 4 (2015)

    Google Scholar 

  • H. Molander, Y. Olsson, O. Engkvist, S. Bowald, I. Eriksson, Muscle Nerve 5, 1 (1982)

    Article  Google Scholar 

  • T. Nakamura, Y. Inada, S. Fukuda, M. Yoshitani, A. Nakada, S.I. Itoi, S.I. Kanemaru, K. Endo, Y. Shimizu, Brain Res. 1027, 1–2 (2004)

    Article  Google Scholar 

  • A.R. Nectow, K.G. Marra, D.L. Kaplan, Tissue Eng. B Rev. 18, 1 (2011)

    Google Scholar 

  • R.J. Nordtveit, K.M. Varum, O. Smidsrod, Carbohydr. Polym. 23, 4 (1994)

    Article  Google Scholar 

  • L.A. Pfister, M. Papaloizos, H.P. Merkle, B. Gander, J. Peripher. Nerv. Syst. 12, 2 (2007)

    Article  Google Scholar 

  • W.Z. Ray, S.E. Mackinnon, Exp. Neurol. 223, 1 (2010)

    Article  Google Scholar 

  • F. Ridley, Proc. Royal Soc. Med., 21 (1928),

  • R.L. Rietze, B.A. Reynolds, Methods Enzymol. 419, 1 (2006)

    Google Scholar 

  • L.R. Robinson, Muscle Nerve 23, 6 (2000)

    Google Scholar 

  • F.J. Rodriguez, E. Verdu, D. Ceballos, X. Navarro, Exp. Neurol. 161, 2 (2000)

    Article  Google Scholar 

  • H.J. Seddon, Br. Med. J. 2, 4260 (1942)

    Google Scholar 

  • D.K. Sen, G.S. Sarin, Br. J. Ophthalmol. 70, 4 (1986)

    Article  Google Scholar 

  • T. Taguchi, H. Kobayashi, H. Saito, Y. Uchida, M. Aizawa, J Adhesion Soc. Japan 43, 8 (2007)

    Article  Google Scholar 

  • G. Terenghi, J. Anatomy 194, 1 (1999)

    Article  Google Scholar 

  • P.A. Wieringa, A.R.G. de Pinho, S. Micera, R.J.A. van Wezel, L. Moroni, Adv. Healthcare Mater. 7, 8 (2018)

    Google Scholar 

Download references

Funding

This work was partly supported by Translational Research program; Strategic PRomotion for practical application of INnovative medical Technology (TR-SPRINT) from Japan Agency for Medical Research and Development (AMED), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Onoe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Ethics approval is not required for this study.

Data availability

The data that supports the findings of this study are available within the article.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itai, S., Suzuki, K., Kurashina, Y. et al. Cell-encapsulated chitosan-collagen hydrogel hybrid nerve guidance conduit for peripheral nerve regeneration. Biomed Microdevices 22, 81 (2020). https://doi.org/10.1007/s10544-020-00536-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00536-x

Keywords

Navigation