Skip to main content
Log in

Dynamic fabrication of microfluidic systems for particles separation based on optical projection lithography

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidic systems are widely used for applications in biology, medicine and chemistry. Particles separation by microfluidics is a scientific subject that requires ongoing research efforts. In this article, we demonstrate a micropillar-based particles separator fabricated using digital micromirror device (DMD)-based optical projection lithography from the perspectives of theory, design, simulation and experiments. Micropillars can be fabricated with customized shapes and sizes which shows high flexible and efficient. The particles separator employs the physical separation of a cylindrical array, a rectangular array, or a triangular array to separate particles. The simulation and experiment results indicate that the device with different micropillars could achieve separation of 20 and 200 μm polystyrene microspheres. Furthermore, the separation efficiency depended on flow rate and the shape of micropillars. All the results can be used to support the redesign of microfluidic structures to address particles separation needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • D. Agustini, M.F. Bergamini, L.H. Marcolino-Junior, Low cost microfluidic device based on cotton threads for electroanalytical application. Lab Chip 16, 345–352 (2016)

    Article  Google Scholar 

  • S.H. Au, J. Edd, A.E. Stoddard, K.H. Wong, F. Fachin, S. Maheswaran, D.A. Haber, S.L. Stott, R. Kapur, M. Toner, Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci. Rep. 7, 2433 (2017)

    Article  Google Scholar 

  • O. Cybulski, P. Garstecki, B.A. Grzybowski, Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nat. Phys. 15, 706 (2019)

    Article  Google Scholar 

  • F.D. Güzel, B. Miles, Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices. Micro & Nano Letters 13, 1352–1357 (2018)

    Article  Google Scholar 

  • A. Ghasemi, H. Amiri, H. Zare, M. Masroor, A. Hasanzadeh, A. Beyzavi, A.R. Aref, M. Karimi, M.R. Hamblin, Carbon nanotubes in microfluidic lab-on-a-chip technology: Current trends and future perspectives. Microfluid. Nanofluid. 21, 151 (2017)

    Article  Google Scholar 

  • D. Gobby, P. Angeli, A. Gavriilidis, Mixing characteristics of T-type microfluidic mixers. J. Micromech. Microeng. 11, 126 (2001)

    Article  Google Scholar 

  • C.-Y. Lee, C.-L. Chang, Y.-N. Wang, L.-M. Fu, Microfluidic mixing: A review. Int. J. Mol. Sci. 12, 3263–3287 (2011)

    Article  Google Scholar 

  • T. Salafi, K.K. Zeming, Y. Zhang, Advancements in microfluidics for nanoparticle separation. Lab Chip 17, 11–33 (2017)

    Article  Google Scholar 

  • E. Samiei, M. Tabrizian, M. Hoorfar, A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16, 2376–2396 (2016)

    Article  Google Scholar 

  • A.F. Sarioglu, N. Aceto, N. Kojic, M.C. Donaldson, M. Zeinali, B. Hamza, A. Engstrom, H. Zhu, T.K. Sundaresan, D.T. Miyamoto, A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685 (2015)

    Article  Google Scholar 

  • P.S. Sharma, Z. Iskierko, K. Noworyta, M. Cieplak, P. Borowicz, W. Lisowski, F. D'Souza, W. Kutner, Synthesis and application of a “plastic antibody” in electrochemical microfluidic platform for oxytocin determination. Biosens. Bioelectron. 100, 251–258 (2018)

    Article  Google Scholar 

  • C.W. Shields IV, C.D. Reyes, G.P.L. Pez, Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230–1249 (2015)

    Article  Google Scholar 

  • G. Simon, Y. Pailhas, M.A. Andrade, J. Reboud, J. Marques-Hueso, M.P. Desmulliez, J.M. Cooper, M.O. Riehle, A.L. Bernassau, Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves. Appl. Phys. Lett. 113, 044101 (2018)

    Article  Google Scholar 

  • A.G. Toh, Z. Wang, C. Yang, N.-T. Nguyen, Engineering microfluidic concentration gradient generators for biological applications. Microfluid. Nanofluid. 16, 1–18 (2014)

    Article  Google Scholar 

  • T. Tsuji, K. Kozai, H. Ishino, S. Kawano, Direct observations of thermophoresis in microfluidic systems. Micro & Nano Letters 12, 520–525 (2017)

    Article  Google Scholar 

  • L. Wang, D. Liu, X. Wang, X. Han, Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. Chem. Eng. Sci. 81, 157–163 (2012)

    Article  Google Scholar 

  • Wu, M., Ouyang, Y., Wang, Z., Zhang, R., Huang, P.-H., Chen, C., Li, H., Li, P., Quinn, D. & Dao, M. 2017. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proceedings of the National Academy of Sciences, 114, 10584-10589

  • J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M.E. Warkiani, W. Li, Fundamentals and applications of inertial microfluidics: A review. Lab Chip 16, 10–34 (2016)

    Article  Google Scholar 

  • J. Zhang, D. Yuan, Q. Zhao, S. Yan, S.-Y. Tang, S.H. Tan, J. Guo, H. Xia, N.-T. Nguyen, W. Li, Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sensors Actuators B Chem. 267, 14–25 (2018)

    Article  Google Scholar 

  • Y. Zhang, N.-T. Nguyen, Magnetic digital microfluidics–a review. Lab Chip 17, 994–1008 (2017)

    Article  Google Scholar 

  • P.F. Geelhoed, R. Lindken, J. Westerweel, Thermophoretic separation in microfluidics. Chem. Eng. Res. Des. 84, 370–373 (2006)

    Article  Google Scholar 

  • Y. Zheng, Y. Sun, Microfluidic devices for mechanical characterisation of single cells in suspension. Micro & Nano Letters 6, 327–331 (2011)

    Article  Google Scholar 

  • H. Zhu, X. Lin, Y. Su, H. Dong, J. Wu, Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens. Bioelectron. 63, 371–378 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 61803323), Shandong Province Higher Educational Science and Technology Program (Project No.J18KA380) and Natural Science Foundation of Shandong Province (Project No. ZR2019BF049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Yang, W., Chu, H. et al. Dynamic fabrication of microfluidic systems for particles separation based on optical projection lithography. Biomed Microdevices 22, 80 (2020). https://doi.org/10.1007/s10544-020-00535-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00535-y

Keywords

Navigation