Skip to main content

Advertisement

Log in

Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The advent of microfluidic technologies has enabled a better recapitulation of in vitro tumor model with higher biological relevance over conventional monolayer assays. This work built upon a microfluidic system that supported the spontaneous aggregate formation of tumoral cells under flow-induced dynamic physical forces in a confined microchamber without additional matrix materials. Our findings indicated that fluidic streams significantly modulated the biological and architectural features of human breast adenocarcinoma cell (MCF-7), human hepatocarcinoma cell (HepG2), and human cervix adenocarcinoma cell (HeLa) with cell-type-dependent variation. The microfluidic platform was further integrated with a fluorescence detection and imaging system, allowing for non-invasive monitoring of cellular accumulation and spatial distribution of a chemotherapeutic agent, doxorubicin (DOX). The cytotoxic effects of DOX of various concentrations were determined and compared in MCF-7 cells in conventional two-dimensional (2D) static and microfluidic culture conditions. Dose-dependent response to DOX was noticed in both cultures, whereas tumor micronodules grown in microfluidic devices demonstrated significantly lower sensitivity to DOX at increased concentration. Our platform owns promising potentials as a universal modality for bridging traditional 2D cell cultures and in vivo experimentation for preclinical anticancer drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A. Agosti, S. Marchesi, G. Scita, P. Ciarletta, ArXiv, 1905.08074 1 (2019)

  • N.H. Baek, O.W. Seo, M.S. Kim, J. Hulme, S.S.A. An, Onco. Targets. Ther. 9, 7207 (2016)

    Article  Google Scholar 

  • A. Casey, M. Gargotti, F. Bonnier, H.J. Byrne, Toxicol. Vitr. 33, 99 (2016)

    Article  Google Scholar 

  • N. Chaicharoenaudomrung, P. Kunhorm, P. Noisa, World J. Stem Cells 11, 1065 (2019)

    Article  Google Scholar 

  • R. Edmondson, J.J. Broglie, A.F. Adcock, L. Yang, Assay Drug Dev. Technol. 12, 207 (2014)

    Article  Google Scholar 

  • Z. Farhane, F. Bonnier, A. Casey, H.J. Byrne, Analyst 140, 4212 (2015)

    Article  Google Scholar 

  • P. Gunness, D. Mueller, V. Shevchenko, E. Heinzle, M. Ingelman-Sundberg, F. Noor, Toxicol. Sci. 133, 67 (2013)

    Article  Google Scholar 

  • B. Han, C. Qu, K. Park, S.F. Konieczny, M. Korc, Cancer Lett. 380, 319 (2016)

    Article  Google Scholar 

  • S. Hehlgans, N. Cordes, Am. J. Cancer Res. 1, 521 (2011)

    Google Scholar 

  • C.K.M. Ip, S.S. Li, M.Y.H. Tang, S.K.H. Sy, Y. Ren, H.C. Shum, A.S.T. Wong, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  • Y. Jo, N. Choi, K. Kim, H.J. Koo, J. Choi, H.N. Kim, Theranostics 8, 5259 (2018)

    Article  Google Scholar 

  • Y. Li, E. Kumacheva, Sci. Adv. 4, eaas8998 (2018)

    Article  Google Scholar 

  • W. Li, Y. Liu, Z. Qian, Y. Yang, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  • C.J. Lovitt, T.B. Shelper, V.M. Avery, BMC Cancer 18, 1 (2018)

    Article  Google Scholar 

  • R. Lüpertz, W. Wätjen, R. Kahl, Y. Chovolou, Toxicology 271, 115 (2010)

    Article  Google Scholar 

  • M.J. Mitchell, M.R. King, Front. Oncol. 3, 1 (2013a)

    Article  Google Scholar 

  • M.J. Mitchell, M.R. King, New J. Phys. 18, 015008 (2013b)

    Article  Google Scholar 

  • M.V. Monteiro, V.M. Gaspar, L.P. Ferreira, J.F. Mano, Biomater. Sci. (2020)

  • B. Nath, A. Raza, V. Sethi, A. Dalal, S.S. Ghosh, G. Biswas, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  • C. Novak, E. Horst, G. Mehta, APL Bioeng. 2, 031701 (2018)

    Article  Google Scholar 

  • A.S. Nunes, A.S. Barros, E.C. Costa, A.F. Moreira, I.J. Correia, Biotechnol. Bioeng. 116, 206 (2019)

    Article  Google Scholar 

  • Z.C. Nwosu, W. Piorońska, N. Battello, A.D. Zimmer, B. Dewidar, M. Han, S. Pereira, B. Blagojevic, D. Castven, V. Charlestin, P. Holenya, J. Lochead, C. De La Torre, N. Gretz, P. Sajjakulnukit, L. Zhang, M.H. Ward, J.U. Marquardt, M.P. di Magliano, C.A. Lyssiotis, J. Sleeman, S. Wölfl, M.P. Ebert, C. Meyer, U. Hofmann, S. Dooley, EBioMedicine 54, 102699 (2020)

    Article  Google Scholar 

  • A. Ozcelikkale, K. Shin, V. Noe-Kim, B.D. Elzey, Z. Dong, J.T. Zhang, K. Kim, I.C. Kwon, K. Park, B. Han, J. Control. Release 266, 129 (2017)

    Article  Google Scholar 

  • X.L. Qian, Y.H. Pan, Q.Y. Huang, Y.B. Shi, Q.Y. Huang, Z.Z. Hu, L.X. Xiong, Onco. Targets Ther. 12, 1539 (2019)

    Article  Google Scholar 

  • N. Raghunand, R.J. Gillies, Drug Resist. Updat. 3, 39 (2000)

    Article  Google Scholar 

  • R. Ravizza, M.B. Gariboldi, L. Passarelli, E. Monti, BMC Cancer 4, 1 (2004)

    Article  Google Scholar 

  • I. Rizvi, U.A. Gurkan, S. Tasoglu, N. Alagic, J.P. Celli, L.B. Mensah, Z. Mai, U. Demirci, T. Hasan, Proc. Natl. Acad. Sci. U. S. A. 110, E1974 (2013)

    Article  Google Scholar 

  • M. Santoro, S.E. Lamhamedi-Cherradi, B.A. Menegaz, J.A. Ludwig, A.G. Mikos, Proc. Natl. Acad. Sci. U. S. A. 112, 10304 (2015)

    Article  Google Scholar 

  • D.A. Senthebane, A. Rowe, N.E. Thomford, H. Shipanga, D. Munro, M.A.M. Al Mazeedi, H.A.M. Almazyadi, K. Kallmeyer, C. Dandara, M.S. Pepper, M.I. Parker, K. Dzobo, Int. J. Mol. Sci. 18 (2017)

  • M. Shang, R.H. Soon, C.T. Lim, B.L. Khoo, J. Han, Lab Chip 19, 369 (2019)

    Article  Google Scholar 

  • S. Shuford, C. Wilhelm, M. Rayner, A. Elrod, M. Millard, C. Mattingly, A. Lotstein, A.M. Smith, Q.J. Guo, L. O’Donnell, J. Elder, L. Puls, S.J. Weroha, X. Hou, V. Zanfagnin, A. Nick, M.P. Stany, G.L. Maxwell, T. Conrads, A.K. Sood, D. Orr, L.M. Holmes, M. Gevaert, H.E. Crosswell, T.M. DesRochers, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  • G. Trujillo-de Santiago, B.G. Flores-Garza, J.A. Tavares-Negrete, I.M. Lara-Mayorga, I. González-Gamboa, Y.S. Zhang, A. Rojas-Martínez, R. Ortiz-López, M.M. Álvarez, Materials (Basel) 12 (2019)

  • K.P. Valente, S. Khetani, A.R. Kolahchi, A. Sanati-Nezhad, A. Suleman, M. Akbari, Drug Discov. Today 22, 1654 (2017)

    Article  Google Scholar 

  • M. Verheijen, Y. Schrooders, H. Gmuender, R. Nudischer, O. Clayton, J. Hynes, S. Niederer, H. Cordes, L. Kuepfer, J. Kleinjans, F. Caiment, Toxicol. Lett. 294, 184 (2018)

    Article  Google Scholar 

  • E.T. Verjans, J. Doijen, W. Luyten, B. Landuyt, L. Schoofs, J. Cell. Physiol. 233, 2993 (2018)

    Article  Google Scholar 

  • P.R. Wachsberger, J. Landry, C. Storck, K. Davis, M.D. O’Hara, C.S. Owen, D.B. Leeper, R.A. Coss, Int. J. Hyperth. 13, 251 (1997)

    Article  Google Scholar 

  • L.Y. Wu, D. Di Carlo, L.P. Lee, Biomed. Microdevices 10, 197 (2008)

    Article  Google Scholar 

  • Y. Yang, X. Yang, J. Zou, C. Jia, Y. Hu, H. Du, H. Wang, Lab a Chip - Miniaturisation Chem. Biol. 15, 735 (2015)

    Article  Google Scholar 

  • Y. Yang, A. Lü, W. Li, Z. Qian, AIP Adv. 9 (2019)

  • T. Yokochi, K.D. Robertson, Mol. Pharmacol. 66, 1415 (2004)

    Article  Google Scholar 

  • H. Zhang, L. Xiao, Q. Li, X. Qi, A. Zhou, Biomicrofluidics 12, 024119 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61875085, 81727804, 81827803). The authors thank Dr. Yangyang Liu for her technical assistance in manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamin Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, S., Chen, C. et al. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin. Biomed Microdevices 22, 70 (2020). https://doi.org/10.1007/s10544-020-00523-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00523-2

Keywords

Navigation