Skip to main content
Log in

Carbon nanotube-based thin-film resistive sensor for point-of-care screening of tuberculosis

Biomedical Microdevices Aims and scope Submit manuscript

Abstract

For point-of-care diagnosis of tuberculosis (TB), current TB diagnostic approaches need to be further improved for achieving an accurate diagnosis that is rapid and low-cost. This paper presents an immuno-resistive sensor on a plastic film for inexpensive, simple TB screening. The sensor is composed of single-walled carbon nanotubes (SWCNTs) functionalized with polyclonal antibodies raised against the MPT64 surface antigen from Mycobacterium tuberculosis (MTB). The target analyte of either MTB or MPT64 is spiked in tongue swab and sputum samples. Under optimized conditions, targets are directly detected from tongue swab samples by resistive measurement. Target analytes spiked into human sputa are enriched with a magnetic bead protocol followed by resistive detection. This highly sensitive film sensor will facilitate rapid TB screening with the added benefits of a small form factor, simple operation, low power requirement, and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • B.L. Allen, P.D. Kichambare, A. Star, Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19, 1439–1451 (2007)

    Article  Google Scholar 

  • P.W. Barone, S. Baik, D.A. Heller, M.S. Strano, Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–U16 (2005)

    Article  Google Scholar 

  • C.C. Boehme, P. Nabeta, D. Hillemann, M.P. Nicol, S. Shenai, F. Krapp, et al., Rapid molecular detection of tuberculosis and Rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010)

    Article  Google Scholar 

  • H.R. Byon, H.C. Choi, Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 128, 2188–2189 (2006)

    Article  Google Scholar 

  • R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li, et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U. S. A. 100, 4984–4989 (2003)

    Article  Google Scholar 

  • P. Cherukuri, S.M. Bachilo, S.H. Litovsky, R.B. Weisman, Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004)

    Article  Google Scholar 

  • K. Dheda, M. Ruhwald, G. Theron, J. Peter, W.C. Yam, Point-of-care diagnosis of tuberculosis: Past, present and future. Respirology 18, 217–232 (2013)

    Article  Google Scholar 

  • A.L. Garcia-Basteiro, A. Dinardo, B. Saavedr, D.R. Silva, D. Palmero, M. Gegia, et al., Point of care diagnostics for tuberculosis. Pulmonology 24, 73–85 (2018)

    Article  Google Scholar 

  • G. Gruner, Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem. 384, 322–335 (2006)

    Article  Google Scholar 

  • S. Gupta, V. Kakkar, Recent technological advancements in tuberculosis diagnostics - a review. Biosens. Bioelectron. 115, 14–29 (2018)

    Article  Google Scholar 

  • J.W. Han, B. Kim, J. Li, M. Meyyappan, Carbon nanotube based humidity sensor on cellulose paper. J. Phys. Chem. C 116, 22094–22097 (2012)

    Article  Google Scholar 

  • I. Heller, J. Kong, K.A. Williams, C. Dekker, S.G. Lemay, Electrochemistry at single-walled carbon nanotubes: The role of band structure and quantum capacitance. J. Am. Chem. Soc. 128, 7353–7359 (2006)

    Article  Google Scholar 

  • I. Heller, A.M. Janssens, J. Mannik, E.D. Minot, S.G. Lemay, C. Dekker, Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591–595 (2008)

    Article  Google Scholar 

  • S.J. Kahng, C. Cerwyn, B.M. Dincau, J.H. Kim, I.V. Novosselov, M.P. Anantram, et al., Nanoink bridge-induced capillary pen printing for chemical sensors. Nanotechnology 29, 335304 (2018)

    Article  Google Scholar 

  • J.-H. Kim, W.-H. Yeo, Z. Shu, S.D. Soelberg, S. Inoue, D. Kalyanasundaram, et al., Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip 12, 1437–1440 (2012)

    Article  Google Scholar 

  • J.-H. Kim, M. Hiraiwa, H.-B. Lee, K.-H. Lee, G.A. Cangelosi, J.-H. Chung, Electrolyte-free amperometric immunosensor using a dendritic nanotip. RSC Adv. 3, 4281–4287 (2013)

    Article  Google Scholar 

  • C.T. Kim, J.H. Kim, J.H. Chung, H.G. Lee, S.J. Jun, Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS One 9, e105767 (2014)

    Article  Google Scholar 

  • D.J. Lee, Y. Chander, S.M. Goyal, T.H. Cui, Carbon nanotube electric immunoassay for the detection of swine influenza virus H1N1. Biosens. Bioelectron. 26, 3482–3487 (2011)

    Article  Google Scholar 

  • C. Li, M. Curreli, H. Lin, B. Lei, F.N. Ishikawa, R. Datar, et al., Complementary detection of prostate-specific antigen using ln(2)O(3) nanowires and carbon nanotubes. J. Am. Chem. Soc. 127, 12484–12485 (2005)

    Article  Google Scholar 

  • A. Luabeya, R. Wood, J. Shenje, E. Filander, C. Ontong, S. Mabwe, et al., Non-invasive detection of tuberculosis by oral swab analysis. J. Clin. Microbiol. 57(3), e01847–e01818 (2019)

    Google Scholar 

  • A. Maroto, K. Balasubramanian, M. Burghard, K. Kern, Functionalized metallic carbon nanotube devices for pH sensing. ChemPhysChem 8, 220–223 (2007)

    Article  Google Scholar 

  • E. Sada, D. Aguilar, M. Torres, T. Herrera, Detection of Lipoarabinomannan as a diagnostic-test for tuberculosis. J. Clin. Microbiol. 30, 2415–2418 (1992)

    Article  Google Scholar 

  • R. Singh, A. Sharma, S. Hong, J. Jang, Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1. Analyst 139, 5415–5421 (2014)

    Article  Google Scholar 

  • A. Sobhan, J.H. Oh, M.K. Park, J. Lee, Detection of peanut allergen Ara h 6 in commercially processed foods using a single-walled carbon nanotube-based biosensor. J. AOAC Int. 101, 1558–1565 (2018)

    Article  Google Scholar 

  • G. Sulis, R. Centis, G. Sotgiu, L. D'ambrosio, E. Pontali, A. Spanevello, et al., Recent developments in the diagnosis and management of tuberculosis. NPJ Prim. Care. Respir. Med. 26, 16078 (2016)

    Article  Google Scholar 

  • D. Wasik, A. Mulchandani, M.V. Yates, A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosens. Bioelectron. 91, 811–816 (2017)

    Article  Google Scholar 

  • L.G. Wayne, Dynamics of submerged growth of Mycobacterium-tuberculosis under aerobic and microaserophilic conditions. Am. J. Respir. Crit. Care Med. 114(4), 807–811 (1976)

    Google Scholar 

  • Who Global Tuberculosis Control Report. http://www.who.int/tb/publications/global_report/2008/pdf/summary.pdf, (2008)

  • R.C. Wood, A.K. Luabeya, K.M. Weigel, A.K. Wilbur, L. Jones-Engel, M. Hatherill, et al., Detection of Mycobacterium tuberculosis DNA on the oral mucosa of tuberculosis patients. Sci. Rep. 5, 8668 (2015)

    Article  Google Scholar 

  • M.S. Yoo, M. Shin, Y. Kim, M. Jang, Y.E. Choi, S.J. Park, et al., Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 175, 269–274 (2017)

    Article  Google Scholar 

  • J. Zhang, A.B. Dichiara, I. Novosselov, D. Gao, J.-H. Chung, Polyacrylic acid coated carbon nanotube–paper composites for humidity and moisture sensing. J. Mater. Chem. C 7, 5374–5380 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program under Award No. W81XWH-17-1-0083. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyun Chung.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahng, SJ., Soelberg, S.D., Fondjo, F. et al. Carbon nanotube-based thin-film resistive sensor for point-of-care screening of tuberculosis. Biomed Microdevices 22, 50 (2020). https://doi.org/10.1007/s10544-020-00506-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00506-3

Keywords

Navigation