Abstract
A fundamental limitation in the derivation of hematopoietic stem and progenitor cells is the imprecise understanding of human developmental hematopoiesis. Herein we established a multilayer microfluidic Aorta-Gonad-Mesonephros (AGM)-on-a-chip to emulate developmental hematopoiesis from pluripotent stem cells. The device consists of two layers of microchannels separated by a semipermeable membrane, which allows the co-culture of human hemogenic endothelial (HE) cells and stromal cells in a physiological relevant spatial arrangement to replicate the structure of the AGM. HE cells derived from human induced pluripotent stem cells (hiPSCs) were cultured on a layer of mesenchymal stromal cells in the top channel while vascular endothelial cells were co-cultured on the bottom side of the membrane within the microfluidic device. We show that this AGM-on-a-chip efficiently derives endothelial-to-hematopoietic transition (EHT) from hiPSCs compared with regular suspension culture. The presence of mesenchymal stroma and endothelial cells renders functional HPCs in vitro. We propose that the AGM-on-a-chip could serve as a platform to dissect the cellular and molecular mechanisms of human developmental hematopoiesis.
This is a preview of subscription content, access via your institution.




References
Adamo L., Naveiras O., Wenzel P. L., McKinney-Freeman S., Mack P. J., Gracia-Sancho J., Suchy-Dicey A., Yoshimoto M., Lensch M. W., Yoder M. C., García-Cardeña G., Daley G. Q., Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. Nature 459, 1131–1135 (2009).+
S.N. Bhatia, D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology 32, 760–772 (2014)
B.W. Blaser, L.I. Zon, Making HSCs in vitro: don't forget the hemogenic endothelium. Blood 132, 1372–1378 (2018)
M.F. Diaz, N. Li, H.J. Lee, L. Adamo, S.M. Evans, H.E. Willey, N. Arora, Y. Torisawa, D.A. Vickers, S.A. Morris, O. Naveiras, S.K. Murthy, D.E. Ingber, G.Q. Daley, G. García-Cardeña, P.L. Wenzel, Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. The Journal of Experimental Medicine 212, 665–680 (2015)
A. Ditadi, C.M. Sturgeon, G. Keller, A view of human haematopoietic development from the petri dish. Nature Reviews. Molecular Cell Biology 18, 56–67 (2017)
D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry 70, 4974–4984 (1998)
E. Dzierzak, A. Bigas, Blood development: Hematopoietic stem cell dependence and Independence. Cell Stem Cell 22, 639–651 (2018)
J.L. Gori, J.M. Butler, Y.Y. Chan, D. Chandrasekaran, M.G. Poulos, M. Ginsberg, D.J. Nolan, O. Elemento, B.L. Wood, J.E. Adair, S. Rafii, H.P. Kiem, Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. European Journal of Clinical Investigation 125, 2032–2045 (2015)
D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)
A. Ivanovs, S. Rybtsov, E.S. Ng, E.G. Stanley, A.G. Elefanty, A. Medvinsky, Human haematopoietic stem cell development: From the embryo to the dish. Development 144, 2323–2337 (2017)
Ng E. S., Azzola L., Bruveris F. F., Calvanese V., Phipson B. and Vlahoskubaitis K., Hirst C., Jokubaitis V. J., Yu Q. C., Maksimovic J., Liebscher S., Januar V., Zhang Z., Williams B., Conscience A., Durnall J., Jackson S., Costa M., Elliott D., Haylock D. N., Nilsson S. K., Saffery R., Schenke-Layland K., Oshlack A., Mikkola H. K., Stanley E. G., Elefanty A., Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nat. Biotechnol. 34, 1168–1179 (2016)
Ohta R., Sugimura R., Niwa A., Saito M. K., Hemogenic Endothelium Differentiation from Human Pluripotent Stem Cells in A Feeder- and Xeno-free Defined Condition. J. Vis. Exp. 148 (2019)
I.I. Slukvin, Generating human hematopoietic stem cells in vitro -exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Letters 590, 4126–4143 (2016)
O.J. Tamplin, E.M. Durand, L.A. Carr, S.J. Childs, E.J. Hagedorn, P. Li, A.D. Yzaguirre, N.A. Speck, L.I. Zon, Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 160, 241–252 (2015)
M. Tewary, N. Shakiba, P.W. Zandstra, Stem cell bioengineering: Building from stem cell biology. Nature Reviews. Genetics 19, 595–614 (2018)
Y. Torisawa, B.H. Chueh, D. Huh, P. Ramamurthy, T.M. Roth, K.F. Barald, S. Takayama, Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab on a Chip 7, 770–776 (2007)
Y. Torisawa, C.S. Spina, T. Mammoto, A. Mammoto, J.C. Weaver, T. Tat, J.J. Collins, D.E. Ingber, Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nature Methods 11, 663–669 (2014)
H. Wu, B. Huang, R.N. Zare, Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab on Chip 5, 1393–1398 (2005)
M.J. Xu, K. Tsuji, T. Ueda, Y.S. Mukouyama, T. Hara, F.C. Yang, Y. Ebihara, S. Matsuoka, A. Manabe, A. Kikuchi, M. Ito, A. Miyajima, T. Nakahata, Stimulation of mouse and human primitive hematopoiesis by murine embryonic aorta-gonad-mesonephros-derived stromal cell lines. Blood 92, 2032–2040 (1998)
Yildirim S., Boehmler A. M., Kanz L., Möhle R., Expansion of cord blood CD34+ hematopoietic progenitor cells in coculture with autologous umbilical vein endothelial cells (HUVEC) is superior to cytokine-supplemented liquid culture. Bone Marrow Transplantation 36, 71–79 (2005)
Acknowledgments
We would like to thank Dr. Misaki Ouchida for graphical assistance, Ms. Harumi Watanabe for administrative assistance, Ms. Yuka Ozaki and Kayo Yano for their technical assistance, and Dr. Peter Karagiannis for reading and editing the paper. This work was supported by the Core Center for iPS Cell Research of Research Center Network for Realization of Regenerative Medicine from the Japan Agency for Medical Research and Development (AMED) [M.K.S.], the Program for Intractable Diseases Research utilizing Disease-specific iPS cells (AMED: 17935423) [M.K.S.], and the Center for Innovation program of Japan Science and Technology Agency (JST) [R.O. and M.K.S.]. R.S. is a recipient of Early Career KAKENHI, iPS Academia Japan, and Sen-shin Medical Research Foundation (SMRF) fellowships. This work was also supported by AMED under Grant No. JP18gm5810008, JSPS KAKENHI Grant No. JP17H02082, and the Kyoto University Hakubi Project [Y.-s.T.].
Author information
Authors and Affiliations
Contributions
R.S., R.O. and Y-s.T. designed the study, conducted the experiments, interpreted the data and wrote the manuscript. C.M., A.L., T.M., E.S. and K.K. conducted the experiments. T.N. established the AGMS-3 cell line. A.N., M.K.S. and Y-s.T. supervised the study. T.N., A.N. and M.K.S. commented on and wrote the manuscript.
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sugimura, R., Ohta, R., Mori, C. et al. Biomimetic aorta-gonad-mesonephros-on-a-chip to study human developmental hematopoiesis. Biomed Microdevices 22, 34 (2020). https://doi.org/10.1007/s10544-020-00488-2
Published:
DOI: https://doi.org/10.1007/s10544-020-00488-2
Keywords
- Organs-on-chips
- Hematopoiesis
- Pluripotent stem cells
- Hematopoietic stem and progenitor cells