Skip to main content

Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device

Abstract

Droplet-based microfluidic devices are now more than ever used for the synthesis of nanoparticles with low polydispersity and well-defined properties suitable for various industrial applications. Very small reaction volumes (microlitre to femtolitre) and short diffusion lengths, provide superior mixing efficiency and heat transport. Both play the dominant role in case of ultra-fast chemical reactions triggered upon reactant mixing, e.g. preparation of colloidal silver by reduction of silver salt. The high sensitivity of these systems to process variables makes otherwise more straightforward batch-wise production prone to suffer from inconsistency and poor reproducibility, which has an adverse effect on the reliability of production and further particle utilisation. This work presents a rigorous description of microfluidic droplet formation, reactant mixing, and nanoparticle synthesis using CFD simulations and experimental methods. The reaction mixture inside of droplets was homogenized in less than 40 milliseconds, which has been confirmed by simulations. Silver nanoparticles produced by droplet-based microfluidic chip showed superior to batch-wise preparation in terms of both particle uniformity and polydispersity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4, 3974–3983 (2014)

    Article  Google Scholar 

  • A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)

    Article  Google Scholar 

  • S. Atta, A.M. Pennington, F.E. Celik, L. Fabris, TiO2 on Gold Nanostars Enhances Photocatalytic Water Reduction in the Near-Infrared Regime. Chem, vol 4 (2018), p. 2140

    Google Scholar 

  • M. Baber, Synthesis of inorganic nanoparticles using microfluidic devices (UCL (University College London), 2017)

  • R. Baber, L. Mazzei, N.T.K. Thanh, A. Gavriilidis, An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor. Nanoscale 9, 14149–14161 (2017)

    Article  Google Scholar 

  • C.N. Baroud, F. Gallaire, R. Dangla, Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010)

    Article  Google Scholar 

  • N.G. Bastús, F. Merkoçi, J. Piella, V. Puntes, Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 26, 2836–2846 (2014)

    Article  Google Scholar 

  • S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 22, 577–583 (2006)

    Article  Google Scholar 

  • M. Cottat, N. Thioune, A.-M. Gabudean, N. Lidgi-Guigui, M. Focsan, S. Astilean, M.L. de la Chapelle, Localized surface plasmon resonance (lspr) biosensor for the protein detection. Plasmonics 8, 699–704 (2013)

    Article  Google Scholar 

  • J.A. Dahl, B.L. Maddux, J.E. Hutchison, Toward greener nanosynthesis. Chem. Rev. 107, 2228–2269 (2007)

    Article  Google Scholar 

  • P. Danckwerts, The definition and measurement of some characteristics of mixtures. Appl. Sci. Res., Section A 3, 279–296 (1952)

    Article  Google Scholar 

  • M.C. Dang, T.M.D. Dang, E. Fribourg-Blanc, Silver nanoparticles ink synthesis for conductive patterns fabrication using inkjet printing technology. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 015003 (2014)

    Article  Google Scholar 

  • Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: A review Talanta

  • R.M. Erb, D. Obrist, P.W. Chen, J. Studer, A.R. Studart, Predicting sizes of droplets made by microfluidic flow-induced dripping. Soft Matter 7, 8757–8761 (2011)

    Article  Google Scholar 

  • A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine 6, 103–109 (2010)

    Article  Google Scholar 

  • S. Ghoreishi, M. Behpour, M. Khayatkashani, M. Motaghedifard, New applied method for simultaneous determination of ellagic and tannic acid by multi-wall carbon nanotube paste electrode: application in quantification punica granatum and Quercus infectoria. Dig. J. Nanomater. Biostruct. (DJNB) 6 (2011)

  • H.S. Harned, C.L. Hildreth, The diffusion coefficient of silver nitrate in dilute aqueous solution at 25°. J. Am. Chem. Soc. 73, 3292–3293 (1951). https://doi.org/10.1021/ja01151a088

    Article  Google Scholar 

  • Haša J, Hanuš J, Stepanek F (2018) Magnetically controlled liposome aggregates for on-demand release of reactive payloads ACS applied materials & interfaces

  • P. Kovačík, M. Singh, F. Štěpánek, Remote control of diffusion from magnetic hollow silica microspheres. Chem. Eng. J. 232, 591–598 (2013)

    Article  Google Scholar 

  • H. Liu, Y. Zhang, Droplet formation in microfluidic cross-junctions. Phys. Fluids 23, 082101 (2011)

    Article  Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal 21, 27–40 (2000)

    Article  Google Scholar 

  • L. Minati, F. Benetti, A. Chiappini, G. Speranza, One-step synthesis of star-shaped gold nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 441, 623–628 (2014)

    Article  Google Scholar 

  • V.V. Mody, R. Siwale, A. Singh, H.R. Mody, Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2, 282 (2010)

    Article  Google Scholar 

  • J. Polte et al., Formation mechanism of colloidal silver nanoparticles: Analogies and differences to the growth of gold nanoparticles. ACS Nano 6, 5791–5802 (2012). https://doi.org/10.1021/nn301724z

    Article  Google Scholar 

  • S. Prabhu, E.K. Poulose, Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2, 32 (2012)

    Article  Google Scholar 

  • S.R. Quake, A. Scherer, From micro-to nanofabrication with soft materials. Science 290, 1536–1540 (2000)

    Article  Google Scholar 

  • K. Ranoszek-Soliwoda et al., The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanopart. Res. 19, 273 (2017)

    Article  Google Scholar 

  • J. Schindelin et al., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676 (2012)

    Article  Google Scholar 

  • Schwalbe T, Autze V, Wille G (2002) Chemical synthesis in microreactors. CHIMIA-ZURICH- 56:636–646

  • X. Shen et al., Spatiotemporal-resolved nanoparticle synthesis via simple programmed microfluidic processes. RSC Adv. 4, 34179–34188 (2014)

    Article  Google Scholar 

  • I. Sondi, D.V. Goia, E. Matijević, Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 260, 75–81 (2003)

    Article  Google Scholar 

  • M.Z. Southard, L.J. Dias, K.J. Himmelstein, V.J. Stella, Experimental determinations of diffusion coefficients in dilute aqueous solution using the method of hydrodynamic stability. Pharm. Res. 8, 1489–1494 (1991). https://doi.org/10.1023/a:1015886131198

    Article  Google Scholar 

  • C.A. Stan, S.K.Y. Tang, G.M. Whitesides, Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal. Chem. 81, 2399–2402 (2009). https://doi.org/10.1021/ac8026542

    Article  Google Scholar 

  • M. Takesue, T. Tomura, M. Yamada, K. Hata, S. Kuwamoto, T. Yonezawa, Size of elementary clusters and process period in silver nanoparticle formation. J. Am. Chem. Soc. 133, 14164–14167 (2011). https://doi.org/10.1021/ja202815y

    Article  Google Scholar 

  • C.E. Talley et al., Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005)

    Article  Google Scholar 

  • V. Tokárová, O. Kašpar, Z. Knejzlík, P. Ulbrich, F. Štěpánek, Development of spray-dried chitosan microcarriers for nanoparticle delivery. Powder Technol. 235, 797–805 (2013)

    Article  Google Scholar 

  • K.-Y. Tung, C.-C. Li, J.-T. Yang, Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid. Nanofluid. 7, 545 (2009)

    Article  Google Scholar 

  • G.T. Vladisavljević, R. Al Nuumani, S.A. Nabavi, Microfluidic production of multiple emulsions. Micromachines 8, 75 (2017)

    Article  Google Scholar 

  • J. Wang, J. Wang, L. Feng, T. Lin, Fluid mixing in droplet-based microfluidics with a serpentine microchannel. RSC Adv. 5, 104138–104144 (2015)

    Article  Google Scholar 

  • L. Xu, J. Peng, M. Yan, D. Zhang, A.Q. Shen, Droplet synthesis of silver nanoparticles by a microfluidic device. Chem. Eng. Process. Process Intensif. 102, 186–193 (2016)

    Article  Google Scholar 

  • X. Yang, A.J. James, J. Lowengrub, X. Zheng, V. Cristini, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J. Comput. Phys. 217, 364–394 (2006)

    Article  MathSciNet  Google Scholar 

  • J.L. Zhang, R.S. Srivastava, R.D.K. Misra, Core−Shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: Synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 23, 6342–6351 (2007). https://doi.org/10.1021/la0636199

    Article  Google Scholar 

  • Y. Zhang, J. Qian, D. Wang, Y. Wang, S. He, Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew. Chem. Int. Ed. 52, 1148–1151 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (GACR 17-11851Y). We would like to thank Laboratoire Colloïdes et Matériaux Divisés for microfluidic designs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tokárová.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kašpar, O., Koyuncu, A.H., Pittermannová, A. et al. Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device. Biomed Microdevices 21, 88 (2019). https://doi.org/10.1007/s10544-019-0435-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0435-4

Keywords

  • Two-phase flow
  • Nanoparticles
  • Droplets
  • CFD simulation
  • Mixing efficiency