Three-dimensional cultured liver-on-a-Chip with mature hepatocyte-like cells derived from human pluripotent stem cells

Abstract

Liver-on-a-Chip technology holds considerable potential for applications in drug screening and chemical-safety testing. To establish such platforms, functional hepatocytes are required; however, primary hepatocytes are commonly used, despite problems involving donor limitations, lot-to-lot variation, and unsatisfactory two-dimensional culture methods. Although human pluripotent stem cells (hPSCs) may represent a strong alternative contender to address the aforementioned issues, remaining technological challenges include the robust, highly efficient production of high-purity hepatic clusters. In addition, current Liver-on-a-Chip platforms are relatively complicated and not applicable for high-throughput experiments. Here, we develop a very simple Liver-on-a-Chip platform with mature and functional hepatocyte-like cells derived from hPSCs. To establish a method for hepatic differentiation of hPSCs, cells were first treated by inhibiting the phosphoinositide 3-kinase- and Rho-associated protein kinase-signaling pathways to stop self-renewal and improve survival, respectively, which enabled the formation of a well-defined endoderm and facilitated hepatocyte commitment. Next, a simple microfluidic device was used to create a three-dimensional (3D) culture environment that enhanced the maturation and function of hepatocyte-like cells by increasing the expression of both hepatic maturation markers and cytochrome P450. Finally, we confirmed improvements in hepatic functions, such as drug uptake/excretion capabilities, in >90% of 3D-matured hepatocyte-like cells by indocyanin green assay. These results indicated that the incorporation of hPSC-derived hepatocytes on our Liver-on-a-Chip platform may serve to enhance the processes involved in drug screening and chemical-safety testing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. A. Asai, E. Aihara, C. Watson, R. Mourya, T. Mizuochi, P. Shivakumar, K. Phelan, C. Mayhew, M. Helmrath, T. Takebe, J. Wells, J.A. Bezerra, Development 144, 1056 (2017)

    Article  Google Scholar 

  2. H. Basma, A. Soto–Gutiérrez, G.R. Yannam, L. Liu, R. Ito, T. Yamamoto, E. Ellis, S.D. Carson, S. Sato, Y. Chen, D. Muirhead, N. Navarro–Álvarez, R.J. Wong, J. Roy–Chowdhury, J.L. Platt, D.F. Mercer, J.D. Miller, S.C. Strom, N. Kobayashi, I.J. Fox, Gastroenterology 136, 990 (2009)

    Article  Google Scholar 

  3. C.H. Beckwitt, A.M. Clark, S. Wheeler, D.L. Taylor, D.B. Stolz, L. Griffith, A. Wells, Exp. Cell Res. 363, 15 (2018)

    Article  Google Scholar 

  4. S.N. Bhatia, D.E. Ingber, Nat. Biotechnol. 32, 760 (2014)

    Article  Google Scholar 

  5. H.K. Bone, A.S. Nelson, C.E. Goldring, D. Tosh, M.J. Welham, J. Cell Sci. 124, 1992 (2011)

    Article  Google Scholar 

  6. C.D. Edington, W.L.K. Chen, E. Geishecker, T. Kassis, L.R. Soenksen, B.M. Bhushan, D. Freake, J. Kirschner, C. Maass, N. Tsamandouras, J. Valdez, C.D. Cook, T. Parent, S. Snyder, J. Yu, E. Suter, M. Shockley, J. Velazquez, J.J. Velazquez, L. Stockdale, J.P. Papps, I. Lee, N. Vann, M. Gamboa, M.E. LaBarge, Z. Zhong, X. Wang, L.A. Boyer, D.A. Lauffenburger, R.L. Carrier, C. Communal, S.R. Tannenbaum, C.L. Stokes, D.J. Hughes, G. Rohatgi, D.L. Trumper, M. Cirit, L.G. Griffith, Sci. Rep. 8, 4530 (2018)

    Article  Google Scholar 

  7. S. Greenhough, H. Bradburn, J. Gardner, D.C. Hay, Cell. Reprogram. 15, 9 (2013)

    Article  Google Scholar 

  8. M. Gröger, J. Dinger, M. Kiehntopf, F.T. Peters, U. Rauen, A.S. Mosig, Adv. Healthc. Mater. 7, 1700616 (2018)

    Article  Google Scholar 

  9. N.R.F. Hannan, C.-P. Segeritz, T. Touboul, L. Vallier, Nat. Protoc. 8, 430 (2013)

    Article  Google Scholar 

  10. D.C. Hay, J. Fletcher, C. Payne, J.D. Terrace, R.C.J. Gallagher, J. Snoeys, J.R. Black, D. Wojtacha, K. Samuel, Z. Hannoun, A. Pryde, C. Filippi, I.S. Currie, S.J. Forbes, J.A. Ross, P.N. Newsome, J.P. Iredale, Proc. Natl. Acad. Sci. 105, 12301 (2008)

    Article  Google Scholar 

  11. T.-S. Huang, L. Li, L. Moalim-Nour, D. Jia, J. Bai, Z. Yao, S.A.L. Bennett, D. Figeys, L. Wang, Stem Cells 33, 1419 (2015)

    Article  Google Scholar 

  12. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328, 1662 (2010)

    Article  Google Scholar 

  13. M. Inamura, K. Kawabata, K. Takayama, K. Tashiro, F. Sakurai, K. Katayama, M. Toyoda, H. Akutsu, Y. Miyagawa, H. Okita, N. Kiyokawa, A. Umezawa, T. Hayakawa, M.K. Furue, H. Mizuguchi, Mol. Ther. 19, 400 (2011)

    Article  Google Scholar 

  14. S. Ishida, Drug Metab. Pharmacokinet. 33, 49 (2018)

    Article  Google Scholar 

  15. K. Kamei, Y. Mashimo, Y. Koyama, C. Fockenberg, M. Nakashima, M. Nakajima, J. Li, Y. Chen, Biomed. Microdevices 17, 36 (2015)

    Article  Google Scholar 

  16. K. Kamei, Y. Koyama, Y. Tokunaga, Y. Mashimo, M. Yoshioka, C. Fockenberg, R. Mosbergen, O. Korn, C. Wells, Y. Chen, Adv. Healthc. Mater. 5, 2951 (2016)

    Article  Google Scholar 

  17. K. Kamei, Y. Kato, Y. Hirai, S. Ito, J. Satoh, A. Oka, T. Tsuchiya, Y. Chen, O. Tabata, RSC Adv. 7, 36777 (2017)

    Article  Google Scholar 

  18. S.R. Khetani, S.N. Bhatia, Nat. Biotechnol. 26, 120 (2008)

    Article  Google Scholar 

  19. H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber, Lab Chip 12, 2165 (2012)

    Article  Google Scholar 

  20. H. Kimura, Y. Sakai, T. Fujii, Drug Metab. Pharmacokinet. 33, 43 (2018)

    Article  Google Scholar 

  21. H.S. Kruitwagen, L.A. Oosterhoff, I.G.W.H. Vernooij, I.M. Schrall, M.E. van Wolferen, F. Bannink, C. Roesch, L. van Uden, M.R. Molenaar, J.B. Helms, G.C.M. Grinwis, M.M.A. Verstegen, L.J.W. van der Laan, M. Huch, N. Geijsen, R.G. Vries, H. Clevers, J. Rothuizen, B.A. Schotanus, L.C. Penning, B. Spee, Stem Cell Reports 8, 822 (2017)

    Article  Google Scholar 

  22. T.E. Ludwig, V. Bergendahl, M.E. Levenstein, J. Yu, M.D. Probasco, J.A. Thomson, Nat. Methods 3, 637 (2006)

    Article  Google Scholar 

  23. U. Marx, T.B. Andersson, A. Bahinski, M. Beilmann, P. Vulto, J. Wang, J. Wiest, M. Rodenburg, A. Roth, J.A.M. Adrienne, Sips 10 (2016)

  24. S. Nantasanti, A. De Bruin, J. Rothuizen, L.C. Penning, B.A. Schotanus, Stem Cells Transl. Med. 5, 325 (2015)

    Article  Google Scholar 

  25. J. Park, B.K. Lee, G.S. Jeong, J.K. Hyun, C.J. Lee, S.-H. Lee, Lab Chip 15, 141 (2015)

    Article  Google Scholar 

  26. K. Ronaldson-Bouchard, G. Vunjak-Novakovic, Cell Stem Cell 22, 310 (2018)

    Article  Google Scholar 

  27. J.M. Rossi, Genes Dev. 15, 1998 (2001)

    Article  Google Scholar 

  28. A. Schepers, C. Li, A. Chhabra, B.T. Seney, S. Bhatia, Lab Chip 16, 2644 (2016)

    Article  Google Scholar 

  29. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Cell 131, 861 (2007)

    Article  Google Scholar 

  30. K. Takayama, M. Inamura, K. Kawabata, K. Tashiro, K. Katayama, F. Sakurai, T. Hayakawa, M.K. Furue, H. Mizuguchi, PLoS One 6, e21780 (2011)

    Article  Google Scholar 

  31. K. Takayama, M. Inamura, K. Kawabata, M. Sugawara, K. Kikuchi, M. Higuchi, Y. Nagamoto, H. Watanabe, K. Tashiro, F. Sakurai, T. Hayakawa, M.K. Furue, H. Mizuguchi, J. Hepatol. 57, 628 (2012)

    Article  Google Scholar 

  32. J.A. Thomson, Science 282, 1145 (1998)

    Article  Google Scholar 

  33. S.J. Trietsch, E. Naumovska, D. Kurek, M.C. Setyawati, M.K. Vormann, K.J. Wilschut, H.L. Lanz, A. Nicolas, C.P. Ng, J. Joore, S. Kustermann, A. Roth, T. Hankemeier, A. Moisan, P. Vulto, Nat. Commun. 8, 262 (2017)

    Article  Google Scholar 

  34. K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J.B. Takahashi, S. Nishikawa, S. Nishikawa, K. Muguruma, Y. Sasai, Nat. Biotechnol. 25, 681 (2007)

    Article  Google Scholar 

  35. Y.S. Zhang, A. Arneri, S. Bersini, S.-R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell’Erba, C. Bishop, T. Shupe, D. Demarchi, M. Moretti, M. Rasponi, M.R. Dokmeci, A. Atala, A. Khademhosseini, Biomaterials 110, 45 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was generously provided by the Japan Society for the Promotion of Science (JSPS; 24656502, 26560209, 16K14660, and 17H02083). Funding was also provided by the Terumo Life Science Foundation and Japan Agency for Medical Research and Development. The WPI-iCeMS is supported by the World Premier International Research Centre Initiative (WPI), MEXT, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Kamei.

Ethics declarations

Competing financial interests

Kyoto University (K.K. and M.Y.) filed a provisional Japanese patent application based on the research presented herein. The other authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamei, Ki., Yoshioka, M., Terada, S. et al. Three-dimensional cultured liver-on-a-Chip with mature hepatocyte-like cells derived from human pluripotent stem cells. Biomed Microdevices 21, 73 (2019). https://doi.org/10.1007/s10544-019-0423-8

Download citation

Keywords

  • Organ on a Chip
  • Pluripotent stem cells
  • Hepatocytes
  • Three-dimensional cell culture
  • Microfluidic device
  • Polydimethylsiloxane