Skip to main content

CoCrMo alloys ions release behavior by TiNbN coating: an in vitro study

Abstract

The aim of the study was to show in vitro the greater inertness to the corrosion body fluid of TiNbN coating than the CoCrMo alloy substrate. The prosthetic component under study was a femoral component of total knee prosthesis in CoCrMo alloy coated in TiNbN with Physical Vapor Deposition technique immersed in static Hank’s balanced salt solution (HBS) (pH = 6) for at least 34 months at a constant temperature of 37 °C. Another uncoated prosthetic component of CoCrMo alloy with the same type and size was left in static immersion in the same solution and for the same period of time. Scanning electron microscope (SEM) analysis was performed to investigate adhesion and proliferation at 24, 48, 72 h after seeding of 104 sub-confluents osteoblast-like cells (SaOS-2) cells on scaffold. The results of the study showed a reduction in the concentration of the metal ions released from the TiNbN-coated femoral component surface compared to the uncoated surface in the HBS solution. The overall reduction of the ions for the TiNbN-coated femoral component compared to the uncoated one was 80.1 ± 2%, 62.5% ± 8% and 48% ± 10% for Co, Cr, Mo, respectively (p < 0.01). SEM analysis confirmed the healthy state of the cells, the cellular adhesion and proliferation of SaOS-2 on the TiNbN-coated specimen. Although the results observed in vitro for the TiNbN coating are encouraging, clinical studies are certainly needed to be performed in order to understand how these positive findings can be translated in vivo and to determine the clinical benefit of TiNbN coating.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. M.C. Aprea, M.L. Scapellato, M.C. Valsania, A. Perico, L. Perbellini, M.C. Ricossa, M. Pradella, S. Negri, I. Iavicoli, P. Lovreglio, F. Salamon, M. Bettinelli, P. Apostoli, Methodology to define biological reference values in the environmental and occupational fields: The contribution of the Italian Society for Reference Values (SIVR). Med. Lav. 108, 138–148 (2017)

    Google Scholar 

  2. A.D. Bloemke, H.D. Clarke, Prevalence of self-reported metal allergy in patients undergoing primary total knee arthroplasty. J. Knee Surg. 28, 243–246 (2015)

    Article  Google Scholar 

  3. A. Dalal, V. Pawar, K. McAllister, C. Weaver, N. Hallab, Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages. J. Biomed. Mater. Res. A 100, 2147–2158 (2012)

    Article  Google Scholar 

  4. DIN 50142-03. Testing of metallic materials; Flat bending fatigue test

  5. S.C. Gad, Acute and chronic systemic chromium toxicity. Sci. Total Environ. 86, 149–157 (1989)

    Article  Google Scholar 

  6. E.Y. Gutmanas, I. Gotman, PIRAC Ti nitride coated Ti-6AI-4V head against UHMWPE acetabular cup-hip wear simulator study. J. Mater. Sci. Mater. Med. 15, 327–330 (2004)

    Article  Google Scholar 

  7. N. Hallab, K. Merritt, J.J. Jacobs, Metal sensitivity in patients with orthopaedic implants. J. Bone Joint Surg. Am. 83, 428 (2001)

    Article  Google Scholar 

  8. T. Hanawa, T. Metal ion release from metal implants. Mater. Sci. Eng. C 24, 745–752 (2004)

    Article  Google Scholar 

  9. ISO 18452:2005 Fine ceramics (advanced ceramics, advanced technical ceramics) Determination of thickness of ceramic films by contact-probe profilometer

  10. ISO 5832-11:2014 Implants for surgery -- Metallic materials -- Part 11: Wrought titanium 6-aluminium 7-niobium alloy

  11. ISO 5832-3:2016 Implants for surgery -- Metallic materials -- Part 3: Wrought titanium 6-aluminium 4-vanadium alloy

  12. ISO 5832-4:2014 Implants for surgery — Metallic materials — Part 4: Cobalt-chromium-molybdenum casting alloy

  13. R.E. Jones, Hexavalent chrome: Threshold concept for carcinogenicity. Biomed. Environ. Sci. 3, 20–34 (1990)

    Google Scholar 

  14. J.J. Joshua, J.L. Gilbert, R.M.U.C.c. review, Corrosion of metal orthopaedic implants. J. Bone Joint Surg. 80, 268–282 (1998)

    Article  Google Scholar 

  15. B. Kasemo, J. Lausmaa, Surface science aspects on inorganic biomaterials. CRC Crit. Rev. Clin. Neurobiol. 2, 335–380 (1986)

    Google Scholar 

  16. E. Kobayashi, T.J. Wang, H. Doi, T. Yoneyama, H. Hamanaka, Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings. J. Mater. Sci. Mater. Med. 9, 567–574 (1998)

    Article  Google Scholar 

  17. A. Léonard, R.R. Lauwerys, Carcinogenicity and mutagenicity of chromium. Mutat. Res. 76, 227–239 (1980)

    Article  Google Scholar 

  18. G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical implants: Corrosion and its prevention - a review. Recent Pat Corros Sci 2, 40–54 (2010)

    Article  Google Scholar 

  19. M. Metikos-Huković, Z. Pilić, R. Babić, D. Omanović, Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution. Acta Biomater. 2, 693–700 (2006)

    Article  Google Scholar 

  20. Y. Okazaki, E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26, 11–21 (2005)

    Article  Google Scholar 

  21. D.J. Paustenbach, B.E. Tvermoes, K.M. Unice, B.L. Finley, B.D. Kerger, A review of the health hazards posed by cobalt. Crit. Rev. Toxicol. 43, 316–362 (2013)

    Article  Google Scholar 

  22. T.T. Roberts, C.M. Haines, R.L. Uhl, Allergic or hypersensitivity reactions to Orthopaedic implants. J. Am. Acad. Orthop. Surg. 25, 693–702 (2017)

    Article  Google Scholar 

  23. A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C.L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, B. Saramago, A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surf. Coat. Technol. 203, 3701–3707 (2009)

    Article  Google Scholar 

  24. K.M. Shah, J.M. Wilkinson, A. Gartland, Cobalt and chromium exposure affects osteoblast function and impairs the mineralization of prosthesis surfaces in vitro. J. Orthop. Res. 33, 1663–1670 (2015)

    Article  Google Scholar 

  25. F.W.J. Sunderman, S.M. Hopfer, T. Swift, W.N. Rezuke, L. Ziebka, P. Highman, B. Edwards, M. Folcik, H.R. Gossling, Cobalt, chromium, and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses. J. Orthop. Res. 7, 307–315 (1989)

    Article  Google Scholar 

  26. J.P. Thyssen, T. Menné, Metal allergy-a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem. Res. Toxicol. 23, 309–318 (2010)

    Article  Google Scholar 

  27. U. Türkan, O. Öztürk, A.E. Eroglu, Metal ion release from TiN coated CoCrMo orthopedic implant material. Surf. Coat. Technol. 200, 5020–5027 (2006)

    Article  Google Scholar 

  28. UNI CEN/TS 1071-7:2003 Advanced technical ceramics - Methods of test for ceramic coatings - Determination of hardness and Young's modulus by instrumented indentation testing

  29. UNI EN 1071-2:2003 Advanced technical ceramics - methods of test for ceramic coatings - determination of coating thickness by the crater grinding method

  30. R.P. van Hove, I.N. Sierevelt, B.J. van Royen, P.A. Nolte, Titanium- nitride coating of Orthopaedic implants: A review of the literature. Biomed. Res. Int. 485975, 2015 (2015)

  31. VDI 3198 Verein Deutscher Ingenieure Normen, VDI-Verlag, Dusseldorf, 1991

  32. H.G. Willert, G.H. Buchhorn, A. Fayyazi, R. Flury, M. Windler, G. Köster, C.H. Lohmann, Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J. Bone Joint Surg. Am. 87, 28–36 (2005)

    Article  Google Scholar 

  33. A. Wisbey, P.J. Gregson, M. Tuke, Application of PVD TiN coating to co-Cr-Mo based surgical implants. Biomaterials 8, 477–480 (1987)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riccardo D’Ambrosi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ragone, V., Canciani, E., Biffi, C.A. et al. CoCrMo alloys ions release behavior by TiNbN coating: an in vitro study. Biomed Microdevices 21, 61 (2019). https://doi.org/10.1007/s10544-019-0417-6

Download citation

Keywords

  • Cobalt-chromium alloy
  • Biocorrosion
  • Titanium niobium nitride coating
  • Biocompatibility
  • Immersion test