Skip to main content
Log in

Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study reports on an efficient microscale one-way valve system that combines the physical properties of photopolymerized microstructures and viscoelastic microchannels to rectify flows with low Reynolds numbers. The comb-shaped moving plug in the microchannel prevented backflow in the closed state to ensure that the microchannel remained completely blocked in the closed state, but allowed forward flow in the open state. This microfluidic check valve was microfabricated using the combination of the soft lithography and the releasing methods with the use of a double photoresist layer to create microchannels and free-moving comb-shaped microstructures, respectively. As a result, the microfluidic check valves elicited average high-pressure differences as much as 10.75 kPa between the backward and forward flows at low Reynolds numbers of the order of 0.253, thus demonstrating efficient rectification of microfluids. This study supports the use of rectification systems for the development of biomedical devices, such as drug delivery, micropumps, and lab-on-a-chip, by allowing unidirectional flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M.L. Adams, M.L. Johnston, A. Scherer, S.R. Quake, J. Micromech. Microeng. 15, 1517 (2005)

    Article  Google Scholar 

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo, Nature 404, 588 (2000)

    Article  Google Scholar 

  • D.C.S. Bien, S.J.N. Mitchell, H.S. Gamble, J. Micromech. Microeng. 13, 557 (2003)

    Article  Google Scholar 

  • Y. Cheng, X. Ye, Z. Ma, S. Xie, W. Wang, Biomicrofluidics 10, 014118 (2016)

    Article  Google Scholar 

  • S. Chung, J.K. Kim, K.C. Wang, D.-C. Han, J.-K. Chang, Biomed. Microdevices 5, 311 (2003)

    Article  Google Scholar 

  • A.J. deMello, Nature 442, 394 (2006)

    Article  Google Scholar 

  • P. Gravesen, J. Branebjerg, O.S. Jensen, J. Micromech. Microeng. 3, 168 (1993)

    Article  Google Scholar 

  • A. Groisman, S.R. Quake, Phys. Rev. Lett. 92, 094501 (2004)

    Article  Google Scholar 

  • E.F. Hasselbrink Jr., T.J. Shepodd, J.E. Rehm, Anal. Chem. 74, 4913 (2002)

    Article  Google Scholar 

  • C. Henry, J.-P. Minier, G. Lefèvre, Adv. Colloid Interf. Sci. 185–186, 34 (2012)

    Article  Google Scholar 

  • J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake, Nat. Biotechnol. 22, 435 (2004)

    Article  Google Scholar 

  • M. Hu, H. Du, S.-F. Ling, Y. Fu, Q. Chen, L. Chow, B. Li, J. Micromech. Microeng. 14, 382 (2004)

    Article  Google Scholar 

  • S.-B. Huang, Y. Zhao, D. Chen, H.-C. Lee, Y. Luo, T.-K. Chiu, J. Wang, J. Chen, M.-H. Wu, Sens. Actuators B 190, 928 (2014)

    Article  Google Scholar 

  • D. Irimia, S.-Y. Liu, W.G. Tharp, A. Samadani, M. Toner, M.C. Poznansky, Lab Chip 6, 191 (2006)

    Article  Google Scholar 

  • D. Kim, D.J. Beebe, Sens. Actuators A 136, 426 (2007)

    Article  Google Scholar 

  • H. Kim, J. Kim, Microfluid. Nanofluid. 16, 623 (2014)

    Article  Google Scholar 

  • B.J. Kirby, T.J. Shepodd, E.F. Hasselbrink Jr., J. Chromatogr. A 979, 147 (2002)

    Article  Google Scholar 

  • B.J. Kirby, D.S. Reichmuth, R.F. Renzi, T.J. Shepodd, B.J. Wiedenman, Lab Chip 5, 184 (2005)

    Article  Google Scholar 

  • E.T. Lagally, I. Medintz, R.A. Mathies, Anal. Chem. 73, 565 (2001)

    Article  Google Scholar 

  • A.C. Lamont, E.C. Reggia, R.D. Sochol, in Proc. IEEE 30th Int. Conf. Micro Electro Mech. Syst. (2017), pp. 1304–1307

  • K.H. Lau, A. Giridhar, S. Harikrishnan, N. Satyanarayana, S.K. Sinha, Microsyst. Technol. 19, 1863 (2013)

    Article  Google Scholar 

  • C.-C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.-S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, H.-R. Tseng, Science 310, 1793 (2005)

  • D.C. Leslie, C.J. Easley, E. Seker, J.M. Karlinsey, M. Utz, M.R. Begley, J.P. Landers, Nat. Phys. 5, 231 (2009)

    Article  Google Scholar 

  • J. Loverich, I. Kanno, H. Kotera, Microfluid. Nanofluid. 3, 427 (2007)

    Article  Google Scholar 

  • S.S. Massenburg, E. Amstad, D.A. Weitz, Microfluid. Nanofluid. 20, 94 (2016)

    Article  Google Scholar 

  • B. Mosadegh, C.-H. Kuo, Y.-C. Tung, Y.-S. Torisawa, T. Bersano-Begey, H. Tavana, S. Takayama, Nat. Phys. 6, 433 (2010)

    Article  Google Scholar 

  • N.-T. Nguyen, T.-Q. Truong, Sens. Actuators B 97, 137 (2004)

    Article  Google Scholar 

  • N.-T. Nguyen, T.-Q. Truong, K.-K. Wong, S.-S. Ho, C.L.-N. Low, J. Micromech. Microeng. 14, 69 (2004)

    Article  Google Scholar 

  • K.W. Oh, C.H. Ahn, J. Micromech. Microeng. 16, R13 (2006)

    Article  Google Scholar 

  • K. Ou, J. Jackson, H. Burt, M. Chiao, Lab Chip 12, 4372 (2012)

    Article  Google Scholar 

  • D.S. Reichmuth, T.J. Shepodd, B.J. Kirby, Anal. Chem. 76, 5063 (2004)

    Article  Google Scholar 

  • R.D. Sochol, M.E. Dueck, S. Li, L.P. Lee, L. Lin, Lab Chip 12, 5051 (2012a)

    Article  Google Scholar 

  • R.D. Sochol, S. Li, L.P. Lee, L. Lin, Lab Chip 12, 4168 (2012b)

    Article  Google Scholar 

  • R.D. Sochol, C.C. Glick, K.Y. Lee, T. Brubaker, A. Lu, M. Wah, S. Gao, E. Hicks, K.T. Wolf, K. Iwai, L.P. Lee, L. Lin, in Proc. IEEE 26th Int. Conf. Micro Electro Mech. Syst. (2013a), pp. 153–156

  • R.D. Sochol, C.C. Glick, A. Lu, M. Wah, T. Brubaker, K.Y. Lee, K. Iwai, L.P. Lee, L. Lin, in Proc. 17th Int. Conf. Solid-State Sens. Actuators Microsyst. (2013b), pp. 2201–2204

  • R.D. Sochol, A. Lu, J. Lei, K. Iwai, L.P. Lee, L. Lin, Lab Chip 14, 1585 (2014)

    Article  Google Scholar 

  • T. Thorsen, S.J. Maerkl, S.R. Quake, Science 298, 580 (2002)

    Article  Google Scholar 

  • M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

  • M. Vázquez, B. Paull, Anal. Chim. Acta 668, 100 (2010)

    Article  Google Scholar 

  • Y.-C. Wang, M.H. Choi, J. Han, Anal. Chem. 76, 4426 (2004)

    Article  Google Scholar 

  • J.A. Weaver, J. Melin, D. Stark, S.R. Quake, M.A. Horowitz, Nat. Phys. 6, 218 (2010)

    Article  Google Scholar 

  • F.M. White, Fluid Mechanics, 8th ed. (McGraw-Hill, New York, 2015)

  • H.M. Wyss, D.L. Blair, J.F. Morris, H.A. Stone, D.A. Weitz, Phys. Rev. E 74, 061402 (2006)

    Article  Google Scholar 

  • D. Xu, L. Wang, G. Ding, Y. Zhou, A. Yu, B. Cai, Sens. Actuators A 93, 87 (2001)

    Article  Google Scholar 

  • R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, Sens. Actuators A 50, 81 (1995)

    Article  Google Scholar 

  • X. Zhang, N. Xiang, W. Tang, D. Huang, X. Wang, H. Yi, Z. Ni, Lab Chip 15, 3473 (2015)

    Article  Google Scholar 

  • X. Zhang, Z. Zhu, N. Xiang, Z. Ni, Biomicrofluidics 10, 054123 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by Korean Ministry of Education (Grant No. NRF- 2018R1D1A1B07051411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyun So.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyeon, J., So, H. Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel. Biomed Microdevices 21, 19 (2019). https://doi.org/10.1007/s10544-019-0365-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0365-1

Keywords

Navigation