Advertisement

Biomedical Microdevices

, 21:19 | Cite as

Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel

  • Jini Hyeon
  • Hongyun SoEmail author
Article
  • 163 Downloads

Abstract

This study reports on an efficient microscale one-way valve system that combines the physical properties of photopolymerized microstructures and viscoelastic microchannels to rectify flows with low Reynolds numbers. The comb-shaped moving plug in the microchannel prevented backflow in the closed state to ensure that the microchannel remained completely blocked in the closed state, but allowed forward flow in the open state. This microfluidic check valve was microfabricated using the combination of the soft lithography and the releasing methods with the use of a double photoresist layer to create microchannels and free-moving comb-shaped microstructures, respectively. As a result, the microfluidic check valves elicited average high-pressure differences as much as 10.75 kPa between the backward and forward flows at low Reynolds numbers of the order of 0.253, thus demonstrating efficient rectification of microfluids. This study supports the use of rectification systems for the development of biomedical devices, such as drug delivery, micropumps, and lab-on-a-chip, by allowing unidirectional flow.

Keywords

Microfluidic check valve Comb-shaped structures Moving plug Biomedical devices Low Reynolds number 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by Korean Ministry of Education (Grant No. NRF- 2018R1D1A1B07051411).

References

  1. M.L. Adams, M.L. Johnston, A. Scherer, S.R. Quake, J. Micromech. Microeng. 15, 1517 (2005)CrossRefGoogle Scholar
  2. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.-H. Jo, Nature 404, 588 (2000)CrossRefGoogle Scholar
  3. D.C.S. Bien, S.J.N. Mitchell, H.S. Gamble, J. Micromech. Microeng. 13, 557 (2003)CrossRefGoogle Scholar
  4. Y. Cheng, X. Ye, Z. Ma, S. Xie, W. Wang, Biomicrofluidics 10, 014118 (2016)CrossRefGoogle Scholar
  5. S. Chung, J.K. Kim, K.C. Wang, D.-C. Han, J.-K. Chang, Biomed. Microdevices 5, 311 (2003)CrossRefGoogle Scholar
  6. A.J. deMello, Nature 442, 394 (2006)CrossRefGoogle Scholar
  7. P. Gravesen, J. Branebjerg, O.S. Jensen, J. Micromech. Microeng. 3, 168 (1993)CrossRefGoogle Scholar
  8. A. Groisman, S.R. Quake, Phys. Rev. Lett. 92, 094501 (2004)CrossRefGoogle Scholar
  9. E.F. Hasselbrink Jr., T.J. Shepodd, J.E. Rehm, Anal. Chem. 74, 4913 (2002)CrossRefGoogle Scholar
  10. C. Henry, J.-P. Minier, G. Lefèvre, Adv. Colloid Interf. Sci. 185–186, 34 (2012)CrossRefGoogle Scholar
  11. J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake, Nat. Biotechnol. 22, 435 (2004)CrossRefGoogle Scholar
  12. M. Hu, H. Du, S.-F. Ling, Y. Fu, Q. Chen, L. Chow, B. Li, J. Micromech. Microeng. 14, 382 (2004)CrossRefGoogle Scholar
  13. S.-B. Huang, Y. Zhao, D. Chen, H.-C. Lee, Y. Luo, T.-K. Chiu, J. Wang, J. Chen, M.-H. Wu, Sens. Actuators B 190, 928 (2014)CrossRefGoogle Scholar
  14. D. Irimia, S.-Y. Liu, W.G. Tharp, A. Samadani, M. Toner, M.C. Poznansky, Lab Chip 6, 191 (2006)CrossRefGoogle Scholar
  15. D. Kim, D.J. Beebe, Sens. Actuators A 136, 426 (2007)CrossRefGoogle Scholar
  16. H. Kim, J. Kim, Microfluid. Nanofluid. 16, 623 (2014)CrossRefGoogle Scholar
  17. B.J. Kirby, T.J. Shepodd, E.F. Hasselbrink Jr., J. Chromatogr. A 979, 147 (2002)CrossRefGoogle Scholar
  18. B.J. Kirby, D.S. Reichmuth, R.F. Renzi, T.J. Shepodd, B.J. Wiedenman, Lab Chip 5, 184 (2005)CrossRefGoogle Scholar
  19. E.T. Lagally, I. Medintz, R.A. Mathies, Anal. Chem. 73, 565 (2001)CrossRefGoogle Scholar
  20. A.C. Lamont, E.C. Reggia, R.D. Sochol, in Proc. IEEE 30th Int. Conf. Micro Electro Mech. Syst. (2017), pp. 1304–1307Google Scholar
  21. K.H. Lau, A. Giridhar, S. Harikrishnan, N. Satyanarayana, S.K. Sinha, Microsyst. Technol. 19, 1863 (2013)CrossRefGoogle Scholar
  22. C.-C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.-S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, H.-R. Tseng, Science 310, 1793 (2005)Google Scholar
  23. D.C. Leslie, C.J. Easley, E. Seker, J.M. Karlinsey, M. Utz, M.R. Begley, J.P. Landers, Nat. Phys. 5, 231 (2009)CrossRefGoogle Scholar
  24. J. Loverich, I. Kanno, H. Kotera, Microfluid. Nanofluid. 3, 427 (2007)CrossRefGoogle Scholar
  25. S.S. Massenburg, E. Amstad, D.A. Weitz, Microfluid. Nanofluid. 20, 94 (2016)CrossRefGoogle Scholar
  26. B. Mosadegh, C.-H. Kuo, Y.-C. Tung, Y.-S. Torisawa, T. Bersano-Begey, H. Tavana, S. Takayama, Nat. Phys. 6, 433 (2010)CrossRefGoogle Scholar
  27. N.-T. Nguyen, T.-Q. Truong, Sens. Actuators B 97, 137 (2004)CrossRefGoogle Scholar
  28. N.-T. Nguyen, T.-Q. Truong, K.-K. Wong, S.-S. Ho, C.L.-N. Low, J. Micromech. Microeng. 14, 69 (2004)CrossRefGoogle Scholar
  29. K.W. Oh, C.H. Ahn, J. Micromech. Microeng. 16, R13 (2006)CrossRefGoogle Scholar
  30. K. Ou, J. Jackson, H. Burt, M. Chiao, Lab Chip 12, 4372 (2012)CrossRefGoogle Scholar
  31. D.S. Reichmuth, T.J. Shepodd, B.J. Kirby, Anal. Chem. 76, 5063 (2004)CrossRefGoogle Scholar
  32. R.D. Sochol, M.E. Dueck, S. Li, L.P. Lee, L. Lin, Lab Chip 12, 5051 (2012a)CrossRefGoogle Scholar
  33. R.D. Sochol, S. Li, L.P. Lee, L. Lin, Lab Chip 12, 4168 (2012b)CrossRefGoogle Scholar
  34. R.D. Sochol, C.C. Glick, K.Y. Lee, T. Brubaker, A. Lu, M. Wah, S. Gao, E. Hicks, K.T. Wolf, K. Iwai, L.P. Lee, L. Lin, in Proc. IEEE 26th Int. Conf. Micro Electro Mech. Syst. (2013a), pp. 153–156Google Scholar
  35. R.D. Sochol, C.C. Glick, A. Lu, M. Wah, T. Brubaker, K.Y. Lee, K. Iwai, L.P. Lee, L. Lin, in Proc. 17th Int. Conf. Solid-State Sens. Actuators Microsyst. (2013b), pp. 2201–2204Google Scholar
  36. R.D. Sochol, A. Lu, J. Lei, K. Iwai, L.P. Lee, L. Lin, Lab Chip 14, 1585 (2014)CrossRefGoogle Scholar
  37. T. Thorsen, S.J. Maerkl, S.R. Quake, Science 298, 580 (2002)CrossRefGoogle Scholar
  38. M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)Google Scholar
  39. M. Vázquez, B. Paull, Anal. Chim. Acta 668, 100 (2010)CrossRefGoogle Scholar
  40. Y.-C. Wang, M.H. Choi, J. Han, Anal. Chem. 76, 4426 (2004)CrossRefGoogle Scholar
  41. J.A. Weaver, J. Melin, D. Stark, S.R. Quake, M.A. Horowitz, Nat. Phys. 6, 218 (2010)CrossRefGoogle Scholar
  42. F.M. White, Fluid Mechanics, 8th ed. (McGraw-Hill, New York, 2015)Google Scholar
  43. H.M. Wyss, D.L. Blair, J.F. Morris, H.A. Stone, D.A. Weitz, Phys. Rev. E 74, 061402 (2006)CrossRefGoogle Scholar
  44. D. Xu, L. Wang, G. Ding, Y. Zhou, A. Yu, B. Cai, Sens. Actuators A 93, 87 (2001)CrossRefGoogle Scholar
  45. R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, Sens. Actuators A 50, 81 (1995)CrossRefGoogle Scholar
  46. X. Zhang, N. Xiang, W. Tang, D. Huang, X. Wang, H. Yi, Z. Ni, Lab Chip 15, 3473 (2015)CrossRefGoogle Scholar
  47. X. Zhang, Z. Zhu, N. Xiang, Z. Ni, Biomicrofluidics 10, 054123 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Institute of Nano Science and TechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations