A microfluidic device for noninvasive cell electrical stimulation and extracellular field potential analysis


We developed a device that can quickly apply versatile electrical stimulation (ES) signals to cells suspended in microfluidic channels and measure extracellular field potential simultaneously. The device could trap cells onto the surface of measurement electrodes for ES and push them to the downstream channel after ES by increasing pressure for continuous measurement. Cardiomyocytes, major functional cells in heart, together with human fibroblast cells and human umbilical vein endothelial cells, were tested with the device. Extracellular field potential signals generated from the cells were recorded. We found that under electrical stimulation, cardiomyocytes were triggered to alter their field potential, while non-excitable cells were not triggered. Hence this device can noninvasively distinguish electrically excitable cells from electrically non-excitable cells. Results have also shown that increased cardiomyocyte cell number led to increased magnitude and occurrence of the cell responses. This relationship could be used to detect the viable cells in a cardiac tissue. Application of variable ES signals on different cardiomyocyte clusters has shown that the application of ES clearly boosted cardiomyocytes electrical activities according to the stimulation frequency. In addition, we confirmed that the device can apply ES onto and detect the electrical responses from a mixed cell cluster; the responses from the mixed cluster is dependent on the ratio of cardiomyocytes. These results demonstrated that our device could be used as a tool to optimize ES conditions to facilitate the functional engineered cardiac tissue development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. S. Ahadian, J. Ramón-Azcón, S. Ostrovidov, G. Camci-Unal, V. Hosseini, H. Kaji, K. Ino, H. Shiku, A. Khademhosseini, T. Matsue, Lab Chip 12, 3491 (2012)

    Article  Google Scholar 

  2. A. Al Abed, N.H. Lovell, G. Suaning, S. Member, S. Dokos, in Eng. Med. Biol. Soc. (EMBC), 2015 37th Annu. Int. Conf. IEEE (2015), pp. 2287–2290

  3. T.J. Blanche, J. Neurophysiol. 93, 2987 (2005)

  4. K.F. Chambers, E.M.O. Mosaad, P.J. Russell, J.A. Clements, M.R. Doran, PLoS One 9, e111029 (2014)

    Article  Google Scholar 

  5. Y.C. Chan, S. Ting, Y.K. Lee, K.M. Ng, J. Zhang, Z. Chen, C.W. Siu, S.K.W. Oh, H.F. Tse, J. Cardiovasc. Transl. Res. 6, 989 (2013)

  6. W. Cheng, N. Klauke, H. Sedgwick, G.L. Smith, J.M. Cooper, Lab Chip 6, 1424 (2006)

    Article  Google Scholar 

  7. W. Cheng, N. Klauke, G. Smith, J.M. Cooper, Electrophoresis 31, 1405 (2010)

    Article  Google Scholar 

  8. X. Dai, W. Zhou, T. Gao, J. Liu, C.M. Lieber, Nat. Nanotechnol. 11, 776 (2016)

    Article  Google Scholar 

  9. Z. Du, O. Bondarenko, D. Wang, M. Rouabhia, Z. Zhang, J. Cell. Physiol. 231, 1301 (2016)

  10. G. Eng, B.W. Lee, L. Protas, M. Gagliardi, K. Brown, R.S. Kass, G. Keller, R.B. Robinson, G. Vunjak-Novakovic, Nat. Commun. 7, 10312 (2016)

  11. D. Eytan, S. Marom, J. Neurosci. 26, 8465 (2006)

  12. R.D. Fields, K. Itoh, Trends Neurosci. 19, 473 (1996)

    Article  Google Scholar 

  13. U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Biosens. Bioelectron. 24, 2191 (2009)

  14. F. Heer, S. Hafizovic, W. Franks, T. Ugniwenko, A. Blau, C. Ziegler, A. Hierlemann, in Proc. ESSCIRC 2005 31st Eur. Solid-State Circuits Conf. (2005)

  15. D. Hernández, R. Millard, P. Sivakumaran, R.C.B. Wong, D.E. Crombie, A.W. Hewitt, H. Liang, S.S. C. Hung, A. Pébay, R.K. Shepherd, G.J. Dusting, S.Y. Lim, in Stem Cells Int. (2016)

  16. M. Hutzler, A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, P. Fromherz, J. Neurophysiol. 96, 1638 (2006)

  17. R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, W. Eberle, Lab Chip 12, 1274 (2012)

    Article  Google Scholar 

  18. M. Jenkner, M. Tartagni, A. Hierlemann, R. Thewes, in IEEE J. Solid-State Circuits (2004)

  19. S. Joucla, B. Yvert, J. Physiol. Paris 106, 146 (2012)

    Article  Google Scholar 

  20. S.B. Jun, M.R. Hynd, K.L. Smith, J.K. Song, J.N. Turner, W. Shain, S.J. Kim, Med. Biol. Eng. Comput. 45, 1015 (2007)

    Article  Google Scholar 

  21. I.S. Kim, J.K. Song, Y.L. Zhang, T.H. Lee, T.H. Cho, Y.M. Song, D.K. Kim, S.J. Kim, S.J. Hwang, Biochim. Biophys. Acta - Mol. Cell Res. 1763, 907 (2006)

    Google Scholar 

  22. N. Klauke, G.L. Smith, J. Cooper, Biophys. J. 85, 1766 (2003)

    Article  Google Scholar 

  23. N. Klauke, G.L. Smith, J. Cooper, Biophys. J. 91, 2543 (2006)

  24. A. Kotwal, C.E. Schmidt, Biomaterials 22, 1055 (2001)

    Article  Google Scholar 

  25. A. Llucià-Valldeperas, B. Sanchez, C. Soler-Botija, C. Gálvez-Montón, S. Roura, C. Prat-Vidal, I. Perea-Gil, J. Rosell-Ferrer, R. Bragos, A. Bayes-Genis, Stem Cell Res Ther 5, 93 (2014)

    Article  Google Scholar 

  26. A. Llucià-Valldeperas, B. Sanchez, C. Soler-Botija, C. Gálvez-Montón, C. Prat-Vidal, S. Roura, J. Rosell-Ferrer, R. Bragos, A. Bayes-Genis, J. Tissue Eng. Regen. Med. 9, E76 (2015)

    Article  Google Scholar 

  27. D. Malleo, J.T. Nevill, A. Van Ooyen, U. Schnakenberg, L.P. Lee, H. Morgan, Rev. Sci. Instrum. 81, 016104 (2010)

  28. S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, M. Zen, Biosens. Bioelectron. 16, 1043 (2001)

  29. F.B. Myers, O.J. Abilez, C.K. Zarins, L.P. Lee, in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS (2011), pp. 4030–4033

  30. F.B. Myers, C.K. Zarins, O.J. Abilez, L.P. Lee, Lab Chip 13, 220 (2013)

    Article  Google Scholar 

  31. R. Nuccitelli, Bioelectromagnetics 13, 147 (1992)

    Article  Google Scholar 

  32. S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Adv. Mater. 23, H263 (2011)

    Article  Google Scholar 

  33. A. Pavesi, M. Soncini, A. Zamperone, S. Pietronave, E. Medico, A. Redaelli, M. Prat, G.B. Fiore, Biotechnol. Bioeng. 111, 1452 (2014)

    Article  Google Scholar 

  34. M. Schuettler, M. Franke, T.B. Krueger, T. Stieglitz, J. Neurosci. Methods 171, 248 (2008)

    Article  Google Scholar 

  35. E. Serena, E. Figallo, N. Tandon, C. Cannizzaro, S. Gerecht, N. Elvassore, G. Vunjak-Novakovic, Exp. Cell Res. 315, 3611 (2009)

    Article  Google Scholar 

  36. M.E. Spira, A. Hai, Nat. Nanotechnol. 8, 83 (2013)

    Article  Google Scholar 

  37. A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, H. Haemmerle, Anal. Bioanal. Chem. 377, 486 (2003)

  38. S.-Y. Wu, H.-S. Hou, Y.-S. Sun, J.-Y. Cheng, K.-Y. Lo, Biomicrofluidics 9, 054120 (2015)

    Article  Google Scholar 

  39. M. Yamada, K. Tanemura, S. Okada, A. Iwanami, M. Nakamura, H. Mizuno, M. Ozawa, R. Ohyama-Goto, N. Kitamura, M. Kawano, K. Tan-Takeuchi, C. Ohtsuka, A. Miyawaki, A. Takashima, M. Ogawa, Y. Toyama, H. Okano, T. Kondo, Stem Cells 25, 562 (2007)

  40. X. Yuan, D.E. Arkonac, P.G. Chao, G. Vunjak-Novakovic, Sci. Rep. 4, 3674 (2015)

    Article  Google Scholar 

  41. M. Zhao, Semin. Cell Dev. Biol. 20, 674 (2009)

  42. M. Zhao, H. Bai, E. Wang, J.V. Forrester, C.D. McCaig, J. Cell Sci. 117, 397 (2003)

Download references


This work is supported by National Science Foundation of USA under award ECCS-1625544.

Author information



Corresponding authors

Correspondence to Ge Zhang or Jiang Zhe.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 234 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ni, L., KC, P., Mulvany, E. et al. A microfluidic device for noninvasive cell electrical stimulation and extracellular field potential analysis. Biomed Microdevices 21, 20 (2019). https://doi.org/10.1007/s10544-019-0364-2

Download citation


  • Electrical stimulation
  • Cell analysis
  • Microchannel
  • Extracellular field potential