Skip to main content

Advertisement

Log in

Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We demonstrate enhanced on-chip circulating tumor cell (CTC) detection through the incorporation of plasmonic-enhanced near-infrared (NIR) fluorescence screening. Specifically, the performance of plasmonic gold coated chips was evaluated on our previously reported immunomagnetic CTC capture system and compared to the performance of a regular chip. Three main performance metrics were evaluated: capture efficiency, capture reproducibility, and clinical efficacy. Use of the plasmonic chip to capture SK-BR-3 cells in PBS, resulted in a capture efficiency of 82%, compared to 76% with a regular chip. Both chips showed excellent capture reproducibility for all three cells lines evaluated (MCF-7, SK-BR-3, Colo 205) in both PBS and peripheral blood, with R2 values ranging from 0.983 to 0.996. Finally, performance of the plasmonic chip was evaluated on thirteen peripheral blood samples in patients with both breast and prostate cancer. The regular chip detected 2–8 cells per 5 mL of blood, while the plasmonic chip detected 8–85 cells per 5 mL of blood in parallel samples. In summary, we successfully demonstrate improved CTC capture and detection capabilities through use of plasmonic-enhanced near-infrared (NIR) fluorescence screening in both in vitro and ex vivo experiments. This work not only has the potential to improve clinical outcomes though improved CTC analysis, but also demonstrates successful interface design between plasmonic materials and cell capture for bioanalytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G. Tibbe, J.W. Uhr, L.W. Terstappen, Clin. Cancer Res. 10, 2 (2004)

    Article  Google Scholar 

  • M.C. Chang, Y.T. Chang, J.Y. Chen, Y.M. Jeng, C.Y. Yang, Y.W. Tien, S.H. Yang, H.L. Chen, T.Y. Liang, C.F. Wang, E.Y. Lee, Y.C. Chang, W.H. Lee, Clin. Chem. 62, 3 (2016)

    Article  Google Scholar 

  • J.Y. Chen, W.S. Tsai, H.J. Shao, J.C. Wu, J.M. Lai, S.H. Lu, T.F. Hung, C.T. Yang, L.C. Wu, J.S. Chen, W.H. Lee, Y.C. Chang, PLoS One 11, 3 (2016)

    Google Scholar 

  • M. Erkan, M. Kurtoglu, J. Kleeff, Expert Rev Gastroenterol Hepatol 10, 3 (2016)

    Article  Google Scholar 

  • D.L. Holliday, V. Speirs, Breast Cancer Res. 13, 4 (2011)

    Article  Google Scholar 

  • G. Hong, S.M. Tabakman, K. Welsher, Z. Chen, J.T. Robinson, H. Wang, B. Zhang, H. Dai, Angew. Chem. 50, 4644 (2011). https://doi.org/10.1002/anie.201100934

    Article  Google Scholar 

  • K. Hoshino, Y. Huang, N. Lane, M. Huebschman, J.W. Uhr, E.P. Frenkel, J.X. Zhang, Lab Chip 11, 20 (2011)

    Article  Google Scholar 

  • K. Hoshino, H. Chung, C. Wu, K. Rajendran, Y. Huang, P. Chen, K. Sokolov, J. Kim, X.J. Zhang, J. Circ. Biomark. 4, 11 (2015)

    Article  Google Scholar 

  • H.M. Kang, G.H. Kim, H.K. Jeon, D.H. Kim, T.Y. Jeon, D.Y. Park, H. Jeong, W.J. Chun, M.H. Kim, J. Park, M. Lim, T.H. Kim, Y.K. Cho, PLoS One 12, 6 (2017)

    Google Scholar 

  • X. Li, T. Kuznetsova, N. Cauwenberghs, M. Wheeler, H. Maecker, J.C. Wu, F. Haddad, H. Dai, Proc. Natl. Acad. Sci. U. S. A. 114, 27 (2017)

    Article  Google Scholar 

  • T. Matsui, T. Onouchi, K. Shiogama, Y. Mizutani, K. Inada, F. Yu, D. Hayasaka, K. Morita, H. Ogawa, F. Mahara, Y. Tsutsumi, Acta Histochem. Cytochem. 48, 5 (2015)

    Article  Google Scholar 

  • P. Paterlini-Brechot, N.L. Benali, Cancer Lett. 253, 2 (2007)

    Article  Google Scholar 

  • V.H. Perez-Gonzalez, R.C. Gallo-Villanueva, S. Camacho-Leon, J.I. Gomez-Quiñones, J.M. Rodriguez-Delgado, S.O. Martinez-Chapa, IET Nanobiotechnol. 10, 5 (2016)

    Article  Google Scholar 

  • C. Printz, Cancer 123, 6 (2017)

    Google Scholar 

  • M. Sahmani, M. Vatanmakanian, M. Goudarzi, N. Mobarra, M. Azad, Asian Pac. J. Cancer Prev. 17, 3 (2016)

    Article  Google Scholar 

  • T. Sawada, J. Araki, T. Yamashita, M. Masubuchi, T. Chiyoda, M. Yunokawa, K. Hoshi, S. Tao, S. Yamamura, S. Yatsushiro, K. Abe, M. Kataoka, T. Shimoyama, Y. Maeda, K. Kuroi, K. Tamura, T. Sawazumi, H. Minami, Y. Suda, F. Koizumi, EBioMedicine 11, 173 (2016). https://doi.org/10.1016/j.ebiom.2016.07.027

    Article  Google Scholar 

  • T.N. Seyfried, L.C. Huysentruyt, Crit. Rev. Oncog. 18, 1–2 (2013)

    Article  Google Scholar 

  • S.M. Tabakman, L. Lau, J.T. Robinson, J. Price, S.P. Sherlock, H. Wang, B. Zhang, Z. Chen, S. Tangsombatvisit, J.A. Jarrell, P.J. Utz, H. Dai, Nat. Commun. 2, 9 (2011)

    Article  Google Scholar 

  • A. Tadimety, A. Syed, Y. Nie, C.R. Long, K.M. Kreadya, J.X. Zhang, Integr. Biol. 9, 22 (2017)

    Article  Google Scholar 

  • A. Tadimety, A. Closson, C. Li, Y. Song, T. Shen, J.X. Zhang, Crit. Rev. Clin. Lab. Sci. 55, 3 (2018)

    Article  Google Scholar 

  • X. Wang, L. Shi, Q. Tao, H. Bao, J. Wu, D. Cai, F. Wang, Y. Zhao, G. Tian, Y. Li, C. Qao, H. Chen, J. Virol. Methods 167, 2 (2010)

    Google Scholar 

  • C.H. Wu, Y.Y. Huang, K. Hoshino, P. Chen, H. Liu, E.P. Frenkel, J.X. Zhang, K.V. Sokolov, ACS Nano 7, 10 (2013)

    Google Scholar 

  • J. Wu, X. Wei, J. Gan, J. Lou, T. Shen, B. Liu, J.X. Zhang, K. Qian, Adv. Funct. Mater. 26, 4016 (2016). https://doi.org/10.1002/adfm.201504184

    Article  Google Scholar 

  • B. Zhang, J.A. Jarrell, J.V. Price, S.M. Tabakman, Y. Li, M. Gong, G. Hong, J. Feng, P.J. Utz, H. Dai, PLoS One 8, 7 (2013)

    Google Scholar 

  • Y. Zhang, X. Zhang, J. Zhang, B. Sun, L. Zheng, J. Li, S. Liu, G. Sui, Z. Yin, Cancer Biol Ther 17, 11 (2016)

    Article  Google Scholar 

  • R. Zhang, B. Le, W. Xu, K. Guo, X. Sun, H. Su, L. Huang, J. Huang, T. Shen, T. Liao, Y. Liang, J.X. Zhang, H. Dai, K. Qian. “Magnetic ‘squashing’ of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection”. 2018

  • Y. Zhu, K. Kekalo, C. NDong, Y. Huang, F. Shubitidze, K.E. Krisword, I. Baker, J.X. Zhang, Adv. Funct. Mater. 26, 3953 (2016). https://doi.org/10.1002/adfm.201504176

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Institute of Health (NIH) Director’s Transformative Research Award (R01HL137157), NSF ECCS-1509369, and Norris Cotton Cancer Center Developmental Funds (Pilot Projects). We would also like to acknowledge Professor Hongjie Dai and his team from Stanford University for providing the expertise and resources on plasmonic detection.

Author information

Authors and Affiliations

Authors

Contributions

K.Q, T.S. and J.X.Z. conceived and designed the experiments; Y.S., YW.S., B.L. and R.Z. performed the experiment; WY.S.,LJ. W. and Y. X. collected healthy donors and patients; WY. S., A.B. and Y.S. wrote the paper; K.Q., T.S. and J X.Z. revised the paper.

Corresponding author

Correspondence to John X. J. Zhang.

Ethics declarations

Conflicts of interest

NanoLite Systems has a technology licensing agreement with the corresponding author (John X. J. Zhang) for the CellRich™ system, but we have no other personal or financial conflicts of interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Song, Y., Burklund, A. et al. Combined immunomagnetic capture coupled with ultrasensitive plasmonic detection of circulating tumor cells in blood. Biomed Microdevices 20, 99 (2018). https://doi.org/10.1007/s10544-018-0333-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0333-1

Keywords

Navigation