Skip to main content
Log in

Elucidating the mechanism governing cell rotation under DEP using the volumetric polarization and integration method

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cell rotation can be achieved by utilizing rotating electric fields through which torques are generated due to phase difference between the dipole moment of cells and the external electric field. While reports of cell rotation under non-rotating electrical fields, such as dielectrophoresis (DEP), are abound, the underlying mechanism is not fully understood. Because of this, contradicting arguments remain regarding if a single cell can rotate under conventional DEP. What’s more, the current prevailing DEP theory is not adequate for identifying the cause for such disagreements. In this work we applied our recently developed Volumetric Polarization and Integration (VPI) method to investigate the possible causes for cell rotation under conventional DEP. Three-dimensional (3D) computer models dealing with a cell in a DEP environment were developed to quantify the force and torque imparted on the cell by the external DEP field using COMSOL Multiphysics software. Modeling results suggest that eccentric inclusions with low conductivity inside the cell will generate torques (either in clockwise or counter-clockwise directions) sufficient to cause cell rotation under DEP. For validation of modeling predictions, experiments with rat adipose stem cells containing large lipid droplets were conducted. Good agreement between our modeling and experimental results suggests that the VPI method is powerful in elucidating the underlying mechanisms governing the complicated DEP phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • L.H. Chau, W. Liang, F.W.K. Cheung, W.K. Liu, W.J. Li, S.C. Chen, G.B. Lee, PLoS One 8, e51577 (2013)

    Article  Google Scholar 

  • N.C. Chen, C.H. Chen, M.K. Chen, L.S. Jang, M.H. Wang, Sensors Actuators B Chem. 190, 570–577 (2014)

    Article  Google Scholar 

  • I. Doh, W.C. Lee, Y.H. Cho, A.P. Pisano, F.A. Kuypers, Appl. Phys. Lett. 100, 173702 (2012)

    Article  Google Scholar 

  • D.S. Gary, J.L. Tan, J. Voldman, C.S. Chen, Biosens. Bioelectron. 19, 1765–1774 (2004)

    Article  Google Scholar 

  • P.R. Gascoyne, X.B. Wang, Y. Huang, F.F. Becker, IEEE Trans. Ind. Appl. 33, 670–678 (1997)

    Article  Google Scholar 

  • J. Gimsa, P. Marszalek, U. Loewe, T.Y. Tsong, Biophys. J. 60, 749–760 (1991)

    Article  Google Scholar 

  • I. Guido, M.S. Jaeger, C. Duschl, Eur. Biophys. J. 40, 281–288 (2011)

    Article  Google Scholar 

  • C.T. Ho, R.Z. Lin, W.Y. Chang, H.Y. Chang, C.H. Liu, Lab Chip 6, 724–734 (2006)

    Article  Google Scholar 

  • C.T. Ho, R.Z. Lin, R.J. Chen, C.K. Chin, S.E. Gong, H.Y. Chang, H.L. Peng, L. Hsu, T.R. Yew, S.F. Chang, C.H. Liu, Lab Chip 13, 3578–3587 (2013)

    Article  Google Scholar 

  • C. Holzapfel, J. Vienken, U. Zimmermann, J. Membr, Biol 67, 13–26 (1982)

    Google Scholar 

  • N. Hu, J. Yang, Z.Q. Yin, Y. Ai, S. Qian, I.B. Svir, B. Xia, J.W. Yan, W.S. Hou, X.L. Zheng, Electrophoresis 32, 2488–2495 (2011)

    Article  Google Scholar 

  • T.B. Jones, IEEE Eng Med Biol Mag 22, 33–42 (2003)

    Article  Google Scholar 

  • Y. Kimura, M. Gel, B. Techaumnat, H. Oana, H. Kotera, M. Washizu, Electrophoresis 32, 2496–2501 (2011)

    Article  Google Scholar 

  • H. Lamb, Hydrodynamics (Dover, New York, 1945)

    MATH  Google Scholar 

  • W. Liang, K. Zhang, X. Yang, L. Liu, H. Yu, W. Zhang, Biomicrofluidics 9, 014121 (2015)

    Article  Google Scholar 

  • S.H. Ling, Y.C. Lam, K.S. Chian, Anal. Chem. 84, 6463–6470 (2012)

    Article  Google Scholar 

  • R.A. Meyer, Applied Optics 18, 585–588 (1979)

    Article  Google Scholar 

  • M. Mittal, E.M. Furst, Adv. Funct. Mater. 19, 3271–3278 (2009)

    Article  Google Scholar 

  • M. Ouyang, W.K. Cheung, W. Liang, J.D. Mai, W.K. Liu, W.J. Li, Biomicrofluidics 7, 054112 (2013)

    Article  Google Scholar 

  • Y. Polevaya, I. Ermolina, M. Schlesinger, B.-Z. Ginzburg, Y. Feldman, Biochim. Biophys. Acta 1419, 257–271 (1999)

    Article  Google Scholar 

  • M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, T. Matsue, Lab Chip 13, 3650–3652 (2013)

    Article  Google Scholar 

  • J.P. Singh, P.P. Lele, F. Nettesheim, N.J. Wagner, E.M. Furst, Phys. Rev. E 79, 050401 (2009)

    Article  Google Scholar 

  • V.L. Sukhorukov, H. Mussauer, U. Zimmermann, J. Membr, Biol 163, 235–245 (1998)

    Google Scholar 

  • A.R. Thiam, M. Beller, J. Cell, Sci, Jcs, 192021 (2017)

  • C. Vaillier, T. Honegger, F. Kermarrec, X. Gidrol, D. Peyrade, PLoS One 9, e95231 (2014)

    Article  Google Scholar 

  • X.B. Wang, Y. Huang, F.F. Becker, P.R.C. Gascoyne, J. Phys. D 27, 1571–1574 (1994)

    Article  Google Scholar 

  • J. Yang, Y. Huang, X. Wang, X.B. Wang, F.F. Becker, P.R.C. Gascoyne, Biophys. J. 76, 3307–3314 (1999)

    Article  Google Scholar 

  • T. Yasukawa, H. Hatanaka, F. Mizutani, Anal. Chem. 84, 8830–8836 (2012)

    Article  Google Scholar 

  • Y. Zhao, D. Chen, H. Li, Y. Luo, B. Deng, S.B. Huang, T.K. Chiu, M.H. Wu, R. Long, H. Hu, J. Wang, J. Chen, Biosens. Bioelectron. 43, 304–307 (2013a)

    Article  Google Scholar 

  • Y. Zhao, J. Hodge, J. Brcka, J. Faguet, E. Lee, G. Zhang, COMSOL conf. Pro. Boston (2013b)

  • Y. Zhao, J. Brcka, J. Faguet, G. Zhang, Biomicrofluidics 11, 024106 (2017)

    Article  Google Scholar 

  • J. Zhu, R.C. Canter, G. Keten, P. Vedantam, T.R.J. Tzeng, X. Xuan, Microfluid Nanofluidics 11, 743–752 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of Clemson’s Palmetto Cluster computing resources. The funding support for this work is provided by Tokyo Electron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guigen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Brcka, J., Faguet, J. et al. Elucidating the mechanism governing cell rotation under DEP using the volumetric polarization and integration method. Biomed Microdevices 20, 81 (2018). https://doi.org/10.1007/s10544-018-0327-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0327-z

Keywords

Navigation