Skip to main content

Advertisement

Log in

A marker-based contactless catheter-sensing method to detect surgeons’ operations for catheterization training systems

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

It is challenging to position a catheter or a guidewire within a patient’s complicated and delicate vascular structure due to the lack of intuitive visual feedback by only manipulating the proximal part of the surgical instruments. Training is therefore critical before an actual surgery because any mistake due to the surgeon’s inexperience can be fatal for the patient. The catheter manipulation skills of experienced surgeons can be useful as input for training novice surgeons. However, few research groups focused on designs with consideration of the contactless catheter motion measurement, which allows obtaining expert surgeons’ catheter manipulation trajectories whilst still allowing them to employ an actual catheter and apply conventional pull, push and twist of the catheter as used in bedside intravascular interventional surgeries. In this paper, a novel contactless catheter-sensing method is proposed to measure the catheter motions by detecting and tracking a passive marker with four feature-point groups. The passive marker is designed to allow simultaneously sensing the translational and rotational motions of the input catheter. Finally, the effectiveness of the proposed contactless catheter-sensing method is validated by conducting a series of comparison experiments. The accuracy and error analysis are quantified based on the absolute error, relative error, mean absolute error, and the success rate of the detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • R. Aggarwal, S.A. Black, J.R. Hance, A. Darzi, N.J.W. Cheshire, Virtual reality simulation training can improve inexperienced surgeons’ endovascular skills. Eur. J. Vasc. Endovasc. Surg. 31(6), 588–593 (2006)

    Article  Google Scholar 

  • L. J. Brattain, C. Floryan, O. P. Hauser, M. Nguyen, R. J. Yong, S. B. Kesner, S. B. Corn, C. J. Walsh, Simple and effective ultrasound needle guidance system, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Aug./Sep. 2011, pp. 8090–8093

  • G. Chen, C. Lin, C. Li, K. Hsieh, Y. Du, T. Chen, Virtual-reality simulator system for double interventional cardiac catheterization using haptic force producer with visual feedback. Comput. Electr. Eng. (2015). https://doi.org/10.1016/j.compeleceng.2015.11.013

    Article  Google Scholar 

  • Z. Feng, G. Bian, X. Xie, Z. Hou, J. Hao, Design and evaluation of a bio-inspired robotic hand for percutaneous coronary intervention, in Proceedings of 2015 IEEE International Conference on Robotics and Automation, Seattle, Washington, May 26–30 2015, pp. 5338–5343

  • J. Guo, S. Guo, N. Xiao, X. Ma, S. Yoshida, T. Tamiya, M. Kawanichi, A novel robotic catheter system with force and visual feedback for vascular interventional surgery. Int. J. of Mechatronics and Automation 2(1), 15–24 (2012)

    Article  Google Scholar 

  • J. Guo, S. Guo, T. Dauteuille, A VR-based Training System for Vascular Interventional Surgery, in Proceedings of 2013 ICME International Conference on Complex Medical Engineering (ICME CME 2013), Beijing, China, May 25–28, 2013, pp. 575–579

  • J. Guo, S. Guo, T. Tamiya, H. Hirata, H. Ishihara, Design and performance evaluation of a master controller for endovascular catheterization. Int. J. Comput. Assist. Radiol. Surg. 11(1), 119–131 (2016)

    Article  Google Scholar 

  • S. Ikeda, F. Arai, T. Fukuda, M. Negoro, K. Irie, I. Takahashi, Patient-Specific Neurovascular Simulator for Evaluating the Performance of Medical Robots and Instruments, in Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006, pp. 625–630

  • A. Kaehler, G. Bradski, Learning OpenCV. (Publisher: O'Reilly Media, 2008)

  • H. Kodama, C. Tercero, K. Ooe, C. Shi, S. Ikeda, T. Fukuda, F. Arai, M. Negoro, I. Takahashi, G. Kwon, 2-D optical encoding of catheter motion and cyber-physical system for technical skills measurement and quantitative evaluation in endovascular surgery, in Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Oct. 7–12, 2012, pp. 3565–3570

  • H. Kodama, C. Shi, M. Kojima, S. Ikeda, F. Arai, I. Takahashi, M. Negoro, T. Fukuda, Catheter manipulation training system based on quantitative measurement of catheter insertion and rotation. Adv. Robot. 28(19), 1321–1328 (2014)

    Article  Google Scholar 

  • S. Li, Q. Wang, Q. Meng, Y. Chui, J. Qin, P. Heng, A catheterization-training simulator based on a fast multigrid solver. IEEE Comput. Graph. Appl. 32(6), 56–70 (2012)

    Article  Google Scholar 

  • W. Lu, W. Xu, J. Zhang, D. Liu, D. Wang, P. Jia, Z. Li, T. Wang, D. Zhang, Z. Tian, Y. Zeng, Application study of medical robots in vascular intervention. Int. J. Med. Rob. Comput. Assisted Surg. 7(3), 361–366 (2011)

    Google Scholar 

  • X. Ma, S. Guo, N. Xiao, S. Yoshida, T. Tamiya, Evaluating performance of a novel developed robotic catheter manipulating system. J. Microbio. Robot. 8(3–4), 133–143 (2013)

    Article  Google Scholar 

  • M. Negoro, M. Tanimoto, F. Arai, T. Fukuda, K. Fukasaku, I. Takahashi, S. Miyachi, An intelligent catheter system robotic controlled catheter system. Interv. Neuroradiol. 7, 111–113 (2002)

    Article  Google Scholar 

  • H. Rafii-Tari, C.J. Payne, G. Yang, Current and emerging robot-assisted endovascular catheterization technologies: A review. Ann. Biomed. Eng. 42(4), 697–715 (2014)

    Article  Google Scholar 

  • C.V. Riga, C.D. Bicknell, A. Rolls, N.J. Cheshire, M.S. Hamady, Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J. Vasc. Interv. Radiol. 24(2), 191–196 (2013)

    Article  Google Scholar 

  • E. Rosten, T. Drummond, Fusing points and lines for high performance tracking, in Tenth IEEE International Conference on Computer Vision, Beijing, China, Oct. 17–21, 2005, pp. 1508–1515

  • E. Rosten, R. Porter, T. Drummond, Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  • W. Saliba, V.Y. Reddy, O. Wazni, J.E. Cummings, J.D. Burkhardt, M. Haissaguerre, J. Kautzner, P. Peichl, P. Neuzil, V. Schibgilla, G. Noelker, J. Brachmann, L.D. Biase, C. Barrett, P. Jais, A. Natale, Atrial fibrillation ablation using a robotic catheter remote control system: Initial human experience and long-term follow-up results. J. Am. Coll. Cardiol. 51(25), 2407–2411 (2008)

    Article  Google Scholar 

  • E. Samur, L. Flaction, H. Bleuler, Design and evaluation of a novel haptic interface for endoscopic simulation. IEEE Trans. Haptics 5(4), (2012)

    Article  Google Scholar 

  • C. Shi, C. Tercero, S. Ikeda, K. Ooe, T. Fukuda, K. Komori, K. Yamamoto, In vitro three-dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker. Int. J. Med. Rob. Comput. Assisted Surg. 8(3), 291–299 (2012)

    Article  Google Scholar 

  • G. Srimathveeravalli, T. Kesavadas, X. Li, Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. Int. J. Med. Rob. Comput. Assisted Surg. 6, 160–170 (2010)

    Google Scholar 

  • J. Stoll, P. E. Dupont, Passive markers for ultrasound tracking of surgical instruments, in Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, 2005, pp.41–48

  • M. Tanimoto, F. Arai, T. Fukuda, H. Iwata, K. Itoigawa, Y. Gotoh, M. Hashimoto, M. Negoro, Micro force sensor for intravascular neurosurgery, in Proceeding of the IEEE International Conference on Robotics and Automation, April 20–25, Albuquerque, NM, 1997, pp. 1561–1566

  • C. Tercero, S. Ikeda, T. Uchiyama, T. Fukuda, F. Arai, Y. Okada, Y. Ono, R. Hattori, T. Yamamoto, M. Negoro, I. Takahashi, Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Int. J. Med. Rob. Comput. Assisted Surg. 3(1), 52–58 (2007)

    Article  Google Scholar 

  • C. Tercero, F. Arai, M. Negoro, I. Takahashi, Numerical comparison of catheter insertion trajectory within blood vessel model using image processing, in 2010 International Symposium on Micro NanoMechatronics and Human Science, Nagoya, Japan, Nov. 2010, pp. 378–383

  • C. Tercero, H. Kodama, C. Shi, K. Ooe, S. Ikeda, T. Fukuda, F. Arai, M. Negoro, G. Kwon, Z. Najdovski, Technical skills measurement based on a cyber-physical system for endovascular surgery simulation. Int. J. Med. Rob. Comput. Assisted Surg. 9(3), e25–e33 (2013)

    Article  Google Scholar 

  • Y. Thakui, J. H. Cakiroglu, D. W. Holdsworth, M. Drangova, A device for real-time measurement of catheter-motion and input to a catheter navigation system, in Medical Imaging 2007: Visualization and Image-Guided Procedures, Vol. 6509, SPIE Proceedings, San Diego, CA, USA, Feb. 2007

  • Y. Thakui, J.S. Bax, D.W. Holdsworth, M. Drangova, Design and performance evaluation of a remote catheter navigation system. IEEE Trans. Biomed. Eng. 56(7), 1901–1908 (2009)

    Article  Google Scholar 

  • J. Wang, T. Ohya, H. Liao, I. Sakuma, T. Wang, I. Tohnai, T. Iwai, Intravascular catheter navigation using path planning and virtual visual feedback for oral cancer treatment. Int. J. Med. Rob. Comput. Assisted Surg. 7, 214–224 (2011)

    Article  Google Scholar 

  • D. Wang, C. Yang, Y. Zhang, J. Xiao, Toward in-vivo force and motion measurement for vascular surgery. IEEE Trans. Instrum. Meas. 63(8), 1975–1982 (2014)

    Article  Google Scholar 

  • D. Wei, S. Hasegawa, K. Takahashi, E. Ryzhii, X. Zhu, A virtual reality for catheter-based EPS based on whole-heart model. International Journal of Bioelectromagnetism 11(1), 2–6 (2009)

    Google Scholar 

  • Y. Yan, D. Chen, H. Yin, Optics based motion measurement for a catheter navigation system: A novel and low cost approach. International Conference on Intelligent Robotics and Applications, Shanghai, China, 10–12 November 2010

  • Z. Zhang, A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partly supported by National Natural Science Foundation of China (61375094), National High Tech. Research and Development Program of China (No.2015AA043202), and SPS KAKENHI Grant Number 15 K2120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Guo, S., Li, M. et al. A marker-based contactless catheter-sensing method to detect surgeons’ operations for catheterization training systems. Biomed Microdevices 20, 76 (2018). https://doi.org/10.1007/s10544-018-0321-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0321-5

Keywords

Navigation