Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator

Abstract

In the ever advancing field of minimally invasive surgery, flexible instruments with local degrees of freedom are needed to navigate through the intricate topologies of the human body. Although cable or concentric tube driven solutions have proven their merits in this field, they are inadequate for realizing small bending radii and suffer from friction, which is detrimental when automation is envisioned. Soft robotic actuators with locally actuated degrees of freedom are foreseen to fill in this void, where elastic inflatable actuators are very promising due to their S3-principle, being Small, Soft and Safe. This paper reports on the characterization of a chip-on-tip endoscope, consisting out of a soft robotic pneumatic bending microactuator equipped with a 1.1 × 1.1 mm2 CMOS camera. As such, the total diameter of the endoscope measures 1.66 mm. To show the feasibility of using this system in a surgical environment, a preliminary test on an eye mock-up is conducted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. G. Chen, M.T. Pham, T. Redarce, Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy. Robot. Auton. Syst. 57(6–7), 712–722 (2009)

    Article  Google Scholar 

  2. Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., & Menciassi, A. STIFF-FLOP Surgical Manipulator: Mechanical Design and Experimental Characterization of the Single Module. Paper presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, JAPAN (2013)

  3. A. De Greef, P. Lambert, A. Delchambre, Towards flexible medical instruments: Review of flexible fluidic actuators. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology 33(4), 311–321 (2009)

    Google Scholar 

  4. M. De Volder, D. Reynaerts, Pneumatic and hydraulic microactuators: A review. J. Micromech. Microeng. 20(4), 043001 (2010)

    Article  Google Scholar 

  5. Devreker, A., Vander Poorten, E., Gijbels, A., Tran, P. T., De Pratere, H., Herijgers, P., et al. (2014). Towards fluidic actuation for catheter-based interventions. Paper presented at the proceedings actuator 2014

  6. Y. Elsayed, A. Vincensi, C. Lekakou, T. Geng, C.M. Saaj, T. Ranzani, et al., Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robotics 1(4), 255–262 (2014)

    Article  Google Scholar 

  7. L. A. Fleury, Pneumatic jack. US1295471 (1919)

  8. K.H. Fuchs, Minimally invasive surgery. Endoscopy 34(02), 154–159 (2002)

    Article  Google Scholar 

  9. N. Fujiwara, S. Sawano, S. Konishi, in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems. MEMS 2009. Linear expansion and contraction of paired pneumatic balloon bending actuators toward telescopic motion (2009), pp. 435–438

    Google Scholar 

  10. D. Glozman, N. Hassidov, M. Senesh, M. Shoham, A self-propelled inflatable earthworm-like endoscope actuated by single supply line. IEEE Trans. Biomed. Eng. 57(6), 1264–1272 (2010)

    Article  Google Scholar 

  11. B. Gorissen, T. Chishiro, S. Shimomura, D. Reynaerts, M. De Volder, S. Konishi, Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sensors and Actuators a-Physical 216, 426–431 (2014)

    Article  Google Scholar 

  12. B. Gorissen, M. De Volder, A. De Greef, D. Reynaerts, Theoretical and experimental analysis of pneumatic balloon microactuators. Sensors and Actuators a-Physical 168(1), 58–65 (2011a)

    Article  Google Scholar 

  13. B. Gorissen, R. Donose, D. Reynaerts, M. De Volder, Flexible pneumatic micro-actuators: Analysis and production. Procedia Engineering 25, 681–684 (2011b)

    Article  Google Scholar 

  14. B. Gorissen, C. Van Hoof, D. Reynaerts, M. De Volder, SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators. Microsystems & nanoengineering 2 (2016)

  15. Y. Haga, Y. Muyari, T. Mineta, T. Matsunaga, H. Akahori, M. Esashi, et al., in Paper Presented at the 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology. Small diameter hydraulic active bending catheter using laser processed super elastic alloy and silicone rubber tube (HI, Oahu, 2005)

    Google Scholar 

  16. L. Hines, K. Petersen, G.Z. Lum, M. Sitti, Soft actuators for small-scale robotics. Adv. Mater. 29(13) (2017)

    Article  Google Scholar 

  17. J. Hu, C.-Y. Chang, N. Tardella, J. Pratt, J. English, Effectiveness of haptic feedback in open surgery simulation and training systems. Stud. Health Technol. Inform 119, 213–218 (2006)

    Google Scholar 

  18. D.-H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S.P. Lee, L. Xu, et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10(4), 316–323 (2011). https://doi.org/10.1038/nmat2971

    Article  Google Scholar 

  19. S. Konishi, Small, soft, safe micromachine for minimally invasive surgery. International Meeting for Future of Electron Devices (IMFEDK) 2011, 20–21 (2011)

  20. S. Konishi, T. Kobayashi, H. Maeda, S. Asajima, M. Makikawa, Cuff actuator for adaptive holding condition around nerves. Sensors and Actuators B-Chemical 83(1–3), 60–66 (2002)

    Article  Google Scholar 

  21. Konishi, S., Nokata, M., Jeong, O. C., Sakakibara, T., Kusuda, S., Kuwayama, M., et al. Merging micro and macro robotics toward micro manipulation for biomedical operation. Paper presented at the the 36th international symposium on robotics (2005)

  22. R.V. Martinez, C.R. Fish, X. Chen, G.M. Whitesides, Elastomeric origami: Programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22(7), 1376–1384 (2012)

    Article  Google Scholar 

  23. R.V. Martinez, A.C. Glavan, C. Keplinger, A.I. Oyetibo, G.M. Whitesides, Soft actuators and robots that are resistant to mechanical damage. Adv. Funct. Mater. 24(20), 3003–3010 (2014)

    Article  Google Scholar 

  24. A.J.M. Moers, M.F.L. De Volder, D. Reynaerts, Integrated high pressure microhydraulic actuation and control for surgical instruments. Biomed. Microdevices 14(4), 699–708 (2012)

    Article  Google Scholar 

  25. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, et al., Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)

    Article  Google Scholar 

  26. H. Okayasu, J. Okamoto, M.G. Fujie, Ieee, in Paper Presented at the IEEE International Conference on Robotics and Automation (ICRA). Development of a hydraulically-driven flexible manipulator including passive safety method (SPAIN, Barcelona, 2005)

    Google Scholar 

  27. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine: Elsevier Science (2004)

  28. D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  29. P. Schiettecatte, R. Plaghki, Gripping apparatus and method of manufacturing agripping apparatus. WO2014131810A1 (2014)

  30. K. Suzumori, Flexible Microactuator. Trans. of Japan Society of Mechanical engineers 55(518), 2547–2552 (1989)

    Article  Google Scholar 

  31. Takemura, K., Yokota, S., & Edamura, K. A Micro Artificial Muscle Actuator using Electro-conjugate Fluid. Paper presented at the robotics and automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE international conference on (2005)

  32. Y.H. Tan, G.M. Preminger, Advances in video and imaging in ureteroscopy. Urol. Clin. N. Am. 31(1), 33–42 (2004)

    Article  Google Scholar 

  33. S. Terryn, J. Brancart, D. Lefeber, G. Van Assche, B. Vanderborght, Self-healing soft pneumatic robots. Science Robotics 2(9) (2017)

    Article  Google Scholar 

  34. R.J. Webster, B.A. Jones, Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  35. M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, J.A. Lewis, et al., An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gorissen.

Electronic supplementary material

ESM 1

(AVI 13007 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorissen, B., De Volder, M. & Reynaerts, D. Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator. Biomed Microdevices 20, 73 (2018). https://doi.org/10.1007/s10544-018-0317-1

Download citation

Keywords

  • Minimally invasive surgery
  • Chip-on-tip endoscope
  • Bending actuator
  • Soft robotic actuator