Skip to main content
Log in

Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Splitting droplets is becoming a major functional component in increasing number of droplet microfluidic applications, and there is an increasing interest in splitting droplets into two daughter droplets with different volumes. However, designing an asymmetric droplet splitter and predicting how a droplet splits in such designs is not trivial. In this study, numerical simulations were conducted to study droplet breakup in asymmetric T-junctions of square cross-sections having different pressure gradient ratios (i.e. T-junctions with outlet branches of different lengths). The goal of the simulation is to identify the conditions where a parent droplet breaks or does not break into two smaller droplets of different sizes (so called critical condition) and to identify the important fluid and microchannel parameters in this process. Four modes of droplet breakup (primary-, transition-, bubble-, and non-breakups) are identified and an empirical correlation is introduced that can predict the breakup/non-breakup of the droplet based on the parent droplet size and the capillary number. The simulation results are then compared with experimental data to verify its accuracy and the effect of fluids properties on the proposed correlation are studied. Two major asymmetric breakup mechanisms are determined, namely “breakup with permanent obstruction” and “unstable breakup”. The numerical results show that the splitting ratio for the asymmetric breakup mechanisms depends on flow conditions and dwell time of the droplet at the junction prior to splitting. Finally, the results from two-dimensional and three-dimensional simulations were compared. It is shown that two-dimensional simulation may not accurately predict the breakup behavior for asymmetric droplet breakup and viscosity ration has a greater effect on the prediction critical condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ca :

Capillary number, \( Ca=\frac{\mu \cdotp U}{\sigma } \)

D Hyd :

Hydraulic diameter, \( {D}_{Hyd}=\frac{4A}{P} \)

F s :

External force

L :

Channel length

p :

Pressure

\( \dot{Q} \) :

Volumetric flow rate

Re :

Reynolds number, \( \mathit{\operatorname{Re}}=\frac{\rho \cdot U\cdot {D}_{Hyd}}{\mu } \)

t :

Time

u :

Fluid velocity

U :

Averaged fluid velocity

V :

Volume

W :

Channel width

We :

Weber number, \( We=\frac{\rho \cdotp {U}^2\cdotp {D}_{Hyd}}{\sigma } \)

α :

Volume fraction

β :

Generic fluid property

ε :

Droplet extension

ζ :

Ratio of pressure gradient, \( \zeta =\frac{L_x}{L_n} \)

η μ :

Viscosity ratio, \( {\eta}_{\mu }=\frac{\mu_D}{\mu_C} \)

η ρ :

Density ratio, \( {\eta}_{\rho }=\frac{\rho_D}{\rho_C} \)

λ :

Length of droplet in the microchannel

μ :

Dynamic viscosity

ξ :

Splitting ratio of daughter droplet, \( \xi =\frac{V_x}{V_n} \)

ρ :

Fluid density

σ :

Surface tension

τ :

Dimensionless time, \( \tau =\frac{\sigma \cdotp t}{\mu\ W} \)

ψ :

Dimensionless constant in the formula for critical Capillary number

C :

Continuous phase

cr :

Critical condition

D :

Discrete phase

Hyd :

Hydraulic diameter

in :

Inlet

n :

Shorter outlet arm

x :

Longer outlet arm

0:

Initial state

References

  • P. Abbyad, R. Dangla, A. Alexandrou, C.N. Baroud, Rails and anchors: Guiding and trapping droplet microreactors in two dimensions. Lab Chip 11(5), 813–821 (2011)

    Article  Google Scholar 

  • J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21(1), 27–40 (2000)

    Article  Google Scholar 

  • J.C. Baret, O.J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M.L. Samuels, J.B. Hutchison, J.J. Agresti, D.R. Link, Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13), 1850–1858 (2009)

    Article  Google Scholar 

  • A. Bedram, A. Moosavi, Numerical investigation of droplets breakup in a microfluidic T-junction. Appl. Mech. Mater. (Trans Tech Publications) 110, 3269–3277 (2012)

    Google Scholar 

  • A. Bedram, A.E. Darabi, A. Moosavi, S.K. Hannani, Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sized droplets in micro-and Nano-fluidic systems. J. Fluids Eng. 137(3), 031202 (2015a)

    Article  Google Scholar 

  • A. Bedram, A. Moosavi, S.K. Hannani, Analytical relations for long-droplet breakup in asymmetric T junctions. Phys. Rev. E 91(5), 053012 (2015b)

    Article  MathSciNet  Google Scholar 

  • N. Bremond, A.R. Thiam, J. Bibette, Decompressing emulsion droplets favors coalescence. Phys. Rev. Lett. 100(2), 024501 (2008)

    Article  Google Scholar 

  • A. Carlson, M. Do-Quang, G. Amberg, Droplet dynamics in a bifurcating channel. Int. J. Multiphase Flow 36(5), 397–405 (2010)

    Article  Google Scholar 

  • B. Chen, G. Li, W. Wang, P. Wang, 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method. Appl. Therm. Eng. 88, 94–101 (2015)

    Article  Google Scholar 

  • P.Y. Colin, B. Kintses, F. Gielen, C.M. Miton, G. Fischer, M.F. Mohamed, M. Hyvönen, D.P. Morgavi, D.B. Janssen, F. Hollfelder, Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015)

    Article  Google Scholar 

  • V. Cristini, Y.C. Tan, Theory and numerical simulation of droplet dynamics in complex flows—A review. Lab Chip 4(4), 257–264 (2004)

    Article  Google Scholar 

  • G. Cristobal, J.P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 034104 (2006)

    Article  Google Scholar 

  • J. Dai, H.S. Kim, A.R. Guzman, W.B. Shim, A. Han, A large-scale on-chip droplet incubation chamber enables equal microbial culture time. RSC Adv. 6(25), 20516–20519 (2016)

    Article  Google Scholar 

  • M. De Menech, Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model. Phys. Rev. E 73(3), 031505 (2006)

    Article  Google Scholar 

  • L. Frenz, J. Blouwolff, A.D. Griffiths, J.C. Baret, Microfluidic production of droplet pairs. Langmuir 24(20), 12073–12076 (2008)

    Article  Google Scholar 

  • L. Frenz, K. Blank, E. Brouzes, A. Griffiths, Reliable microfluidic on-chip incubation of droplets in delay-lines. Lab Chip 9(10), 1344–1348 (2009)

    Article  Google Scholar 

  • T. Fu, Y. Ma, H.Z. Li, Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop. AICHE J. 60(5), 1920–1929 (2014)

    Article  Google Scholar 

  • Y. Fu, L. Bai, Y. Jin, Y. Cheng, Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference. Phys. Fluids 29(3), 032003 (2017)

    Article  Google Scholar 

  • A.R. Guzman, H.S. Kim, P. de Figueiredo, A. Han, A three-dimensional electrode for highly efficient electrocoalescence-based droplet merging. Biomed. Microdevices 17(2), 35 (2015)

    Article  Google Scholar 

  • S.I. Han, H.S. Kim, A. Han, In-droplet cell concentration using dielectrophoresis. Biosens. Bioelectron. 97, 41–45 (2017)

    Article  Google Scholar 

  • D.A. Hoang, L.M. Portela, C.R. Kleijn, M.T. Kreutzer, V. van Steijn, Dynamics of droplet breakup in a T-junction. J. Fluid Mech. 717 (2013)

  • D. Hümmer, F. Kurth, N. Naredi-Rainer, P.S. Dittrich, Single cells in confined volumes: Microchambers and microdroplets. Lab Chip 16(3), 447–458 (2016)

    Article  Google Scholar 

  • S. Jakiela, T.S. Kaminski, O. Cybulski, D.B. Weibel, P. Garstecki, Bacterial growth and adaptation in microdroplet chemostats. Angew. Chem. Int. Ed. 52(32), 8908–8911 (2013)

    Article  Google Scholar 

  • H.N. Joensson, H. Andersson Svahn, Droplet microfluidics—A tool for single-cell analysis. Angew. Chem. Int. Ed. 51(49), 12176–12192 (2012)

    Article  Google Scholar 

  • M.C. Jullien, M.J. Tsang Mui Ching, C. Cohen, L. Menetrier, P. Tabeling, Droplet breakup in microfluidic T-junctions at small capillary numbers. Physics of Fluids 21(7), 072001 (2009)

    Article  Google Scholar 

  • H.S. Kim, S.C. Hsu, S.I. Han, H.R. Thapa, A.R. Guzman, D.R. Browne, M. Tatli, T.P. Devarenne, D.B. Stern, A. Han, High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Plant Direct 1(3), 1–13 (2017)

    Article  Google Scholar 

  • A.M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D.A. Weitz, M.W. Kirschner, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5), 1187–1201 (2015)

    Article  Google Scholar 

  • A.M. Leshansky, L.M. Pismen, Breakup of drops in a microfluidic T junction. Phys. Fluids 21(2), 023303 (2009)

    Article  Google Scholar 

  • D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92(5), 054503 (2004)

    Article  Google Scholar 

  • D. Lombardi, P.S. Dittrich, Droplet microfluidics with magnetic beads: A new tool to investigate drug–protein interactions. Anal. Bioanal. Chem. 399(1), 347–352 (2011)

    Article  Google Scholar 

  • E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck, J.J. Trombetta, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5), 1202–1214 (2015)

    Article  Google Scholar 

  • L. Ménétrier-Deremble, P. Tabeling, Droplet breakup in microfluidic junctions of arbitrary angles. Phys. Rev. E 74(3), 035303 (2006)

    Article  Google Scholar 

  • J. Nie, R.T. Kennedy, Sampling from nanoliter plugs via asymmetrical splitting of segmented flow. Anal. Chem. 82(18), 7852–7856 (2010)

    Article  Google Scholar 

  • T. Nisisako, T. Torii, T. Higuchi, Droplet formation in a microchannel network. Lab Chip 2(1), 24–26 (2002)

    Article  Google Scholar 

  • X. Pan, S. Zeng, Q. Zhang, B. Lin, J. Qin, Sequential microfluidic droplet processing for rapid DNA extraction. Electrophoresis 32(23), 3399–3405 (2011)

    Article  Google Scholar 

  • M. Samie, A. Salari, M.B. Shafii, Breakup of microdroplets in asymmetric T junctions. Phys. Rev. E 87(5), 053003 (2013)

    Article  Google Scholar 

  • H.A. Stone, Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26(1), 65–102 (1994)

    Article  MathSciNet  Google Scholar 

  • W.H. Tan, S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. 104(4), 1146–1151 (2007)

    Article  Google Scholar 

  • S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  • T.M. Tran, F. Lan, C.S. Thompson, A.R. Abate, From tubes to drops: Droplet-based microfluidics for ultrahigh-throughput biology. J. Phys. D. Appl. Phys. 46(11), 114404 (2013)

    Article  Google Scholar 

  • V. van Steijn, M.T. Kreutzer, C.R. Kleijn, μ-PIV study of the formation of segmented flow in microfluidic T-junctions. Chem. Eng. Sci. 62(24), 7505–7514 (2007)

    Article  Google Scholar 

  • H.D. Xi, H. Zheng, W. Guo, A.M. Gañán-Calvo, Y. Ai, C.W. Tsao, J. Zhou, W. Li, Y. Huang, N.T. Nguyen, S.H. Tan, Active droplet sorting in microfluidics: A review. Lab Chip 17(5), 751–771 (2017)

    Article  Google Scholar 

  • L. Xu, H. Lee, R. Panchapakesan, K.W. Oh, Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks. Lab Chip 12(20), 3936–3942 (2012)

    Article  Google Scholar 

  • B. Zhou, C. Wang, X. Xiao, Y.S. Hui, Y. Cao, W. Wen, Controllable microdroplet splitting via additional lateral flow and its application in rapid synthesis of multi-scale microspheres. RSC Adv. 5(14), 10365–10371 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by the NPRP award [NPRP 5-671-2-278] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author[s]. The high performance computing resources and services used in this work is jointly provided by the IT Research Computing Group at TAMUQ and High Performance Research Computing at the Texas A&M Supercomputing Facility in College Station, Texas, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sadr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W.L., Sadr, R., Dai, J. et al. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels. Biomed Microdevices 20, 72 (2018). https://doi.org/10.1007/s10544-018-0310-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0310-8

Keywords

Navigation