Skip to main content

Advertisement

Log in

Microtissue size and cell-cell communication modulate cell migration in arrayed 3D collagen gels

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

A Correction to this article was published on 18 September 2018

This article has been updated

Abstract

Cells communicate through the extracellular matrix (ECM) in many physiological and pathological processes. This is particularly important during cell migration, where cell communication can alter both the speed and the direction of migration. However, most cell culture systems operate with large volumes relative to cell numbers, creating low cell densities and diluting factors that mediate cell communication. Furthermore, they lack the ability to isolate single cells or small groups of cells. Droplet forming devices allow for an ability to embed single or small groups of cells into small volume segregated 3D environments, increasing the cell density to physiological levels. In this paper we show a microfluidic droplet device for fabricating 3D collagen-based microtissues to study breast cancer cell motility. MDA-MB-231 cells fail to spread and divide in small, thin chambers. Cell migration is also stunted as compared to thick 3D gels. However, larger chambers formed by a thicker devices promote cell spreading, cell division and faster migration. In the large devices, both cell-ECM and cell-cell interactions affect cell motility. Increasing collagen density decreases cell migration and increasing the number of cells per chamber increases cell migration speed. Furthermore, cells appear to sense both the ECM-chamber wall interface as well as other cells. Cells migrate towards the ECM-chamber interface if within roughly 150 μm, whereas cells further than 150 μm tend to move towards the center of the chamber. Finally, while cells do not show enhanced movement towards the center of mass of a cell cluster, their migration speed is more variable when further away from the cell cluster center of mass. These results show that microfluidic droplet devices can array 3D collagen gels and promote cell spreading, division and migration similar to what is seen in thick 3D collagen gels. Furthermore, they can provide a new avenue to study cell migration and cell-cell communication at physiologically relevant cell densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 18 September 2018

    The original version of this article unfortunately contained a mistake. One line indicating statistical significance was improperly placed in Fig. 5.

References

  • E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L. Vitale, M.C. Pelleri, S. Tassani, F. Piva, S. Perez-Amodio, P. Strippoli, S. Canaider, Ann. Hum. Biol. 40, 463 (2013)

    Article  Google Scholar 

  • M.-E. Brett, A.L. Crampton, D.K. Wood, TECHNOLOGY 4, 80 (2016)

    Article  Google Scholar 

  • A. Buxboim, K. Rajagopal, A.E.X. Brown, D.E. Discher, J. Phys. Condens. Matter 22, 194116 (2010)

    Article  Google Scholar 

  • H.F. Chan, Y. Zhang, K.W. Leong, Small 12, 2720 (2016)

    Article  Google Scholar 

  • P.H.G. Chao, S.C. Sheng, W.R. Chang, J. Mech. Behav. Biomed. Mater. 38, 232 (2014)

    Article  Google Scholar 

  • X. Che, J. Nuhn, I. Schneider, L. Que, Micromachines 7, 84 (2016)

    Article  Google Scholar 

  • Y.-C. Chen, P. Ingram, Y. Luan, and E. Yoon, in Essentials Single-Cell Anal., edited by F. Tseng and T. S. Santra, Series in (Springer, Verlag Berlin Heidelberg, 2016), pp. 1–29

  • W.C. Cheng, Y. He, A.Y. Chang, L. Que, Biomicrofluidics 7, 064102 (2013)

    Article  Google Scholar 

  • P. Delnero, Y.H. Song, C. Fischbach, Biomed. Microdevices 15, 583 (2013)

    Article  Google Scholar 

  • A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006)

    Article  Google Scholar 

  • Q. Fan, R. Liu, Y. Jiao, C. Tian, J.D. Farrell, W. Diao, X. Wang, F. Zhang, W. Yuan, H. Han, J. Chen, Y. Yang, X. Zhang, F. Ye, M. Li, Z. Ouyang, L. Liu, Lab Chip 17, 2852 (2017)

    Article  Google Scholar 

  • C.H. Feng, Y.C. Cheng, P.H.G. Chao, Acta Biomater. 9, 5502 (2013)

    Article  Google Scholar 

  • S. I. Fraley, P.-H. Wu, L. He, Y. Feng, R. Krisnamurthy, G. D. Longmore, and D. Wirtz, (2015)

  • D.S. Gray, J. Tien, C.S. Chen, J. Biomed. Mater. Res. Part A 66A, 605 (2003)

    Article  Google Scholar 

  • Z. Guan, S. Jia, Z. Zhu, M. Zhang, C.J. Yang, Anal. Chem. 86, 2789 (2014)

    Article  Google Scholar 

  • B. Gumuscu, H.J. Albers, A. Van Den Berg, J.C.T. Eijkel, A.D. Van Der Meer, Sci. Rep. 7, 3381 (2017)

    Article  Google Scholar 

  • E. Hadjipanayi, V. Mudera, R.A. Brown, Cell Motil. Cytoskeleton 66, 121 (2009)

    Article  Google Scholar 

  • Q. Han, E.M. Bradshaw, B. Nilsson, D.A. Hafler, J.C. Love, Lab Chip 10, 1391 (2010)

    Article  Google Scholar 

  • S.M. Hong, H.J. Hsu, R. Kaunas, J. Kameoka, Lab Chip 12, 3277 (2012)

    Article  Google Scholar 

  • S.B. Huang, Y.H. Chang, H.C. Lee, S.W. Tsai, M.H. Wu, Biomed. Microdevices 16, 345 (2014)

    Article  Google Scholar 

  • M. Jang, I. Koh, S.J. Lee, J.H. Cheong, P. Kim, Sci. Rep. 7, 41541 (2017)

    Article  Google Scholar 

  • H.N. Joensson, H.A. Svahn, Angew. Chemie-International Ed. 51, 12176 (2012)

    Article  Google Scholar 

  • M. Junkin, S. Tay, Lab Chip 14, 1246 (2014)

    Article  Google Scholar 

  • B.J. Kim, S. Zhao, R.P. Bunaciu, A. Yen, M. Wu, Biotechnol. Prog. 31, 990 (2015)

    Article  Google Scholar 

  • C.Y. Li, D.K. Wood, J.H. Huang, S.N. Bhatia, Lab Chip 13, 1969 (2013)

    Article  Google Scholar 

  • Y.H. Lin, C.T. Chen, L.L.H. Huang, G. Bin Lee, Biomed. Microdevices 9, 833 (2007)

    Article  Google Scholar 

  • Y. Lu, J.J. Chen, L. Mu, Q. Xue, Y. Wu, P.H. Wu, J. Li, A.O. Vortmeyer, K. Miller-Jensen, D. Wirtz, R. Fan, Anal. Chem. 85, 2548 (2013)

    Article  Google Scholar 

  • S. Ma, M. Natoli, X. Liu, M.P. Neubauer, F.M. Watt, A. Fery, W.T.S. Huck, J. Mater. Chem. B 1, 5128 (2013)

    Article  Google Scholar 

  • J.M. Maloney, E.B. Walton, C.M. Bruce, K.J. Van Vliet, Phys. Rev. E 78, 041923 (2008)

    Article  Google Scholar 

  • E. Meijering, O. Dzyubachyk, and I. Smal, in (2012), pp. 183–200

  • S. Nakagawa, P. Pawelek, F. Grinnell, J. Invest. Dermatol. 93, 792 (1989)

    Article  Google Scholar 

  • K. Park, J.Y. Hwang, C. Kim, J.Y. Kang, H.J. Chun, D.K. Han, Tissue Eng. Regen. Med. 6, 353 (2009)

    Google Scholar 

  • D. Patel, A. Haque, Y. Gao, A. Revzin, Integr. Biol. (Camb). 7(815) (2015)

    Article  Google Scholar 

  • S.R. Peyton, A.J. Putnam, J. Cell. Physiol. 204, 198 (2005)

    Article  Google Scholar 

  • D.F. Quail, J.A. Joyce, Nat. Med. 19, 1423 (2013)

    Article  Google Scholar 

  • M. Raab, J. Swift, P. Dingal, P. Shah, J.W. Shin, D.E. Discher, J. Cell Biol. 199, 669 (2012)

    Article  Google Scholar 

  • K.A. Rahman, G.A. Sathi, H. Taketa, M. Farahat, M. Okada, Y. Torii, T. Matsumoto, 3D Print. Addit. Manuf. 2, 5 (2015)

    Article  Google Scholar 

  • S. S. Rao, S. Bentil, J. DeJesus, J. Larison, A. Hissong, R. Dupaix, A. Sarkar, and J. O. Winter, PLoS One 7, (2012)

    Article  Google Scholar 

  • N.R. Romsey, Y. Hou, L.L. Rodriguez, I.C. Schneider, Cell. Mol. Bioeng. 7, 122 (2014)

    Article  Google Scholar 

  • M.S. Rudnicki, H.A. Cirka, M. Aghvami, E.A. Sander, Q. Wen, K.L. Billiar, Biophys. J. 105, 11 (2013)

    Article  Google Scholar 

  • S. Sen, A.J. Engler, D.E. Discher, Cell. Mol. Bioeng. 2, 39 (2009)

    Article  Google Scholar 

  • L.H. Souter, J.D. Andrews, G. Zhang, A.C. Cook, C.O. Postenka, W. Al-Katib, H.S. Leong, D.I. Rodenhiser, A.F. Chambers, A.B. Tuck, Lab. Investig. 90, 1247 (2010)

    Article  Google Scholar 

  • M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian, Y. Wu, Z. Gong, S. Zhang, J. Zhou, K. Cao, X. Li, W. Xiong, G. Li, Z. Zeng, C. Guo, J. Cancer 8, 761 (2017)

    Article  Google Scholar 

  • K. Wolf, M. te Lindert, M. Krause, S. Alexander, J. te Riet, A.L. Willis, R.M. Hoffman, C.G. Figdor, S.J. Weiss, P. Friedl, J. Cell Biol. 201, 1069 (2013)

    Article  Google Scholar 

  • M.A. Wozniak, P.J. Keely, Biol. Proced. Online 7, 144 (2005)

    Article  Google Scholar 

  • M. Yamada, A. Hori, S. Sugaya, Y. Yajima, R. Utoh, M. Yamato, M. Seki, Lab Chip 15, 3941 (2015)

    Article  Google Scholar 

  • Z. Yin, D. Noren, C.J. Wang, R. Hang, A. Levchenko, Mol. Syst. Biol. 4 (2008)

  • J. Yoon, J. Kim, H.E. Jeong, R. Sudo, M.J. Park, S. Chung, Biofabrication 8, 035014 (2016)

    Article  Google Scholar 

  • S. Yoshida, M. Takinoue, H. Onoe, Adv. Healthc. Mater. 6, 1601463 (2017)

    Article  Google Scholar 

  • M.H. Zaman, L.M. Trapani, A. Siemeski, D. MacKellar, H.Y. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Proc. Natl. Acad. Sci. U. S. A. 103, 10889 (2006)

    Article  Google Scholar 

  • Z. Zhang, Y.-C. Chen, Y.-H. Cheng, Y. Luan, E. Yoon, Lab Chip 16, 2504 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an NSF award [1461841] and seed funding from the Iowa State University College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Que or Ian C. Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuhn, J.A.M., Gong, S., Che, X. et al. Microtissue size and cell-cell communication modulate cell migration in arrayed 3D collagen gels. Biomed Microdevices 20, 62 (2018). https://doi.org/10.1007/s10544-018-0309-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0309-1

Keywords

Navigation