Self-powered infusion microfluidic pump for ex vivo drug delivery

Abstract

In this work, we present a new iSIMPLE concept (infusion Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation), which requires no external power for activation nor liquid manipulation, it is easy to use while its fabrication method is extremely simple, inexpensive and suited for mass replication. The pump consists of a working liquid, which is - after finger activation - absorbed in a porous material (e.g. filter paper). The air expelled from the porous material increases the pressure in the downstream outlet channel and propels the outlet liquid (i.e. the sample) through the channel or ejects it. Here we investigated the influence of different filter papers on the iSIMPLE flow rates, achieving a wide range from 30 down to 0.07 μL/min. We also demonstrated the versatility of the iSIMPLE in terms of the liquid volume that can be manipulated (from 0.5 μL up to 150 μL) and the working pressure reaching 64 kPa, unprecedented high for a self-powered microfluidics pump. In addition, using a 34 G microneedle mounted on the iSIMPLE, we successfully injected liquids with different viscosities (from 0.93 up to 55.88 cP) both into an agarose matrix and a skin-like biological ex vivo substrate (i.e. chicken breast tissue). This work validated the compatibility of the iSIMPLE with drug delivery in a controlled way into a skin-like matrix, envisioning a whole new scenario for intradermal injections using self-contained skin patch. In addition, due to the extreme flexibility of the design and manufacturing, the iSIMPLE concept offers enormous opportunities for completely autonomous, portable and cost effective LOC devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. J.B. Alarcon, A.W. Hartley, N.G. Harvey, J.A. Mikszta, Clin. Vaccine Immunol. 14, 375 (2007)

    Article  Google Scholar 

  2. ALERE DETERMINE™ HIV-1/2 AG/AB COMBO (2016) https://www.alere.com/en/home/product-details/determine-1-2-ag-ab-combo.html?c=AU. Accessed 22 May 2018

  3. P. Anton, Viscosity measurement of whole. Blood (2016)

  4. A. Arora, I. Hakim, J. Baxter, R. Rathnasingham, R. Srinivasan, D.A. Fletcher, S. Mitragotri, Proc. Natl. Acad. Sci. U. S. A. 104, 4255 (2007)

    Article  Google Scholar 

  5. S. Begolo, D.V. Zhukov, D.A. Selck, L. Li, R.F. Ismagilov, Lab Chip 14, 4616 (2014)

    Article  Google Scholar 

  6. A.J. Chung, Y.S. Huh, D. Erickson, Biomed. Microdevices 11, 861 (2009)

    Article  Google Scholar 

  7. Clearblue (2016) Clearblue pregnancy test. http://www.clearblue.com/healthcareprofessionals/pregnancy-tests. Accessed 22 May 2018

  8. Clearview (2016) ALERE™ MALARIA AG P.F. https://www.alere.com/en/home/product-details/alere-malaria-ag-pf.html. Accessed 22 May 2018

  9. G. Comina, A. Suska, D. Filippini, Biosens. Bioelectron. 77, 1153 (2015a)

    Article  Google Scholar 

  10. G. Comina, A. Suska, D. Filippini, Angew. Chem. Int. Ed. Engl. 54, 8708 (2015b)

    Article  Google Scholar 

  11. V.F. Curto, S. Coyle, R. Byrne, N. Angelov, D. Diamond, F. Benito-Lopez, Sensors Actuators B Chem. 175, 263 (2012a)

    Article  Google Scholar 

  12. V.F. Curto, C. Fay, S. Coyle, R. Byrne, C.O.’. Toole, C. Barry, S. Hughes, N. Moyna, D. Diamond, F. Benito-Lopez, Sensors Actuators B Chem. 171, 1327 (2012b)

    Article  Google Scholar 

  13. F. Dal Dosso, D. Decrop, E. Pérez-Ruiz, D. Daems, H. Agten, O. Al-Ghezi, O. Bollen, J. Breukers, F. De Rop, M. Katsafadou, J. Lepoudre, L. Lyu, P. Piron, R. Saesen, S. Sels, R. Soenen, E. Staljanssens, J. Taraporewalla, T. Kokalj, D. Spasic, J. Lammertyn, Anal. Chim. Acta (2017)

  14. L.A. Dick, Innovative drug delivery technology to meet evolving need of biologics and small. Molecules (2015)

  15. I.K. Dimov, L. Basabe-Desmonts, J.L. Garcia-Cordero, B.M. Ross, A.J. Ricco, L.P. Lee, Y. Park, A.J. Ricco, L.P. Lee, Lab Chip 11, 845 (2011)

    Article  Google Scholar 

  16. E. Elizalde, R. Urteaga, C.L.A. Berli, Lab Chip 15, 2173 (2015)

    Article  Google Scholar 

  17. J. Etter, C. Ng, A. Bohlke, S. Burton, and L. Dick, (n.d.)

  18. C.P. Foley, N. Nishimura, K.B. Neeves, C.B. Schaffer, W.L. Olbricht, Biomed. Microdevices 11, 915 (2009)

    Article  Google Scholar 

  19. E.L. França, E.B. Ribeiro, E.F. Scherer, D.G. Cantarini, R.S. Pessôa, F.L. França, A.C. Honorio-França, Biomed Res. Int 840379 (2014)

  20. N. Fries, Capillary Transport Processes in Porous Materials: Experiment and Model, University of Bremen, (2010)

  21. E. Fu, T. Liang, P. Spicar-Mihalic, J. Houghtaling, S. Ramachandran, P. Yager, Anal. Chem. 84, 4574 (2012)

    Article  Google Scholar 

  22. H. Gensler, R. Sheybani, P.-Y. Li, R. Lo Mann, E. Meng, Biomed. Microdevices 14, 483 (2012)

    Article  Google Scholar 

  23. L. Gervais, E. Delamarche, Lab Chip 9, 3330 (2009)

    Article  Google Scholar 

  24. D. G. Greene, P. Wuthrich, R. C. Portilla, M. Herring, R. P. Mahoney, S. Webb, J. Sorvillo, and D. S. Soane, in 13th Annu. PEGS Summit (Boston, 2017)

  25. W. Guo, J. Hansson, W. van der Wijngaart, Langmuir 32, 12650 (2016)

    Article  Google Scholar 

  26. J. Gupta, S.S. Park, B. Bondy, E.I. Felner, M.R. Prausnitz, Biomaterials 32, 6823 (2011)

    Article  Google Scholar 

  27. U.O. Häfeli, A. Mokhtari, D. Liepmann, B. Stoeber, Biomed. Microdevices 11, 943 (2009)

    Article  Google Scholar 

  28. K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda, Lab Chip 4, 181 (2004)

    Article  Google Scholar 

  29. Inkscape (2016) https://inkscape.org/en/about/overview/. Accessed 22 May 2018

  30. B.A. Inman, W. Etienne, R. Rubin, R.A. Owusu, T.R. Oliveira, D.B. Rodriques, P.F. Maccarini, P.R. Stauffer, A. Mashal, M.W. Dewhirst, Int. J. Hyperth. 29, 206 (2013)

    Article  Google Scholar 

  31. N. Inoue, E. Takai, T. Arakawa, K. Shiraki, Mol. Pharm. 11, 1889 (2014)

    Article  Google Scholar 

  32. W.W. Koelmans, G. Krishnamoorthy, A. Heskamp, J. Wissink, S. Misra, N. Tas, Mech. Eng. Res. 3, 51 (2013)

    Article  Google Scholar 

  33. T. Kokalj, Y. Park, M. Vencelj, M. Jenko, L.P. Lee, Lab Chip 14, 4329 (2014)

    Article  Google Scholar 

  34. E. Leonard, in Subcutaneous and Intramuscular Injections. Administration of Medication via intradermal (2017)

    Google Scholar 

  35. Po-Ying Li, J. Shih, R. Lo, B. Adams, R. Agrawa, S. Saati, M. S. Humayun, Yu-Chong Tai, and E. Meng, in 2007 IEEE 20th Int. Conf. Micro Electro Mech. Syst. (IEEE, 2007), pp. 15–18

  36. G. Li, Y. Luo, Q. Chen, L. Liao, J. Zhao, Biomicrofluidics 6, 14118 (2012)

    Article  Google Scholar 

  37. D.Y. Liang, A.M. Tentori, I.K. Dimov, L.P. Lee, Biomicrofluidics 5, 24108 (2011)

    Article  Google Scholar 

  38. R. Lo, P.-Y. Li, S. Saati, R.N. Agrawal, M.S. Humayun, E. Meng, Biomed. Microdevices 11, 959 (2009)

    Article  Google Scholar 

  39. D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 39, 1153 (2010)

    Article  Google Scholar 

  40. W. Martanto, J.S. Moore, O. Kashlan, R. Kamath, P.M. Wang, J.M. O’Neal, M.R. Prausnitz, Pharm. Res. 23, 104 (2006)

    Article  Google Scholar 

  41. A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Anal. Chem. 82, 3 (2010)

    Article  Google Scholar 

  42. N.-T. Nguyen, S.A.M. Shaegh, N. Kashaninejad, D.-T. Phan, Adv. Drug Deliv. Rev. 65, 1403 (2013)

    Article  Google Scholar 

  43. A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, Sensors Actuators B Chem. 130, 917 (2008)

    Article  Google Scholar 

  44. P. Novo, V. Chu, J.P. Conde, Biosens. Bioelectron. 57, 284 (2014)

    Article  Google Scholar 

  45. M. Ochoa, C. Mousoulis, B. Ziaie, Adv. Drug Deliv. Rev. 64, 1603 (2012)

    Article  Google Scholar 

  46. K.W. Oh, C.H. Ahn, J. Micromech. Microeng. 16, 13 (2006)

    Article  Google Scholar 

  47. S.-J. Paik, S. Byun, J.-M. Lim, Y. Park, A. Lee, S. Chung, J. Chang, K. Chun, Sensors Actuators A 114, 276 (2004)

    Article  Google Scholar 

  48. S.L. Perry, J.J.L. Higdon, P.J.A. Kenis, Lab Chip 10, 3112 (2010)

    Article  Google Scholar 

  49. F.N. Pirmoradi, J.K. Jackson, H.M. Burt, M. Chiao, Lab Chip 11, 3072 (2011)

    Article  Google Scholar 

  50. L. Qin, O. Vermesh, Q. Shi, J.R. Heath, Lab Chip 9 (2016, 2009)

  51. X. Qiu, J.A. Thompson, Z. Chen, C. Liu, D. Chen, S. Ramprasad, M.G. Mauk, S. Ongagna, C. Barber, W.R. Abrams, D. Malamud, P.L.A.M. Corstjens, H.H. Bau, Biomed. Microdevices 11, 1175 (2009)

    Article  Google Scholar 

  52. Quidel (2016) QuickVue Influenza A+B. https://www.quidel.com/immunoassays/rapid-influenza-tests/quickvue-influenza-test. Accessed 22 May 2018

  53. R. Riahi, A. Tamayol, S.A.M. Shaegh, A.M. Ghaemmaghami, M.R. Dokmeci, A. Khademhosseini, Curr. Opin. Chem. Eng. 7, 101 (2015)

    Article  Google Scholar 

  54. P. Ruef, J. Gehm, L. Gehm, C. Felbinger, J. Pöschl, N. Kuss, Gen. Physiol. Biophys. 33, 285 (2014)

    Article  Google Scholar 

  55. R.K. Sivamani, B. Stoeber, G.C. Wu, H. Zhai, D. Liepmann, H. Maibach, Skin Res. Technol. 11, 152 (2005)

    Article  Google Scholar 

  56. X. Wang, J.A. Hagen, I. Papautsky, Biomicrofluidics 7, 14107 (2013)

    Article  Google Scholar 

  57. S.P. Woods, T.G. Constandinou, J. Micro-Bio Robot. 11, 19 (2016)

    Article  Google Scholar 

  58. S. Yadav, S.J. Shire, D.S. Kalonia, J. Pharm. Sci. 99, 4812 (2010)

    Article  Google Scholar 

  59. W. Yang, Y.G. Nam, B.-K. Lee, K. Han, T.H. Kwon, D.S. Kim, Jpn. J. Appl. Phys. 49, 06GM01 (2010)

    Google Scholar 

  60. E.-C. Yeh, C.-C. Fu, L. Hu, R. Thakur, J. Feng, L.P. Lee, Sci. Adv. 3, e1501645 (2017)

    Article  Google Scholar 

  61. P.K. Yuen, V.N. Goral, Lab Chip 10, 384 (2010)

    Article  Google Scholar 

  62. D. Zhang, D.B. Das, C.D. Rielly, J. Pharm. Sci. 103, 613 (2014)

    Article  Google Scholar 

  63. M. Zimmermann, H. Schmid, P. Hunziker, E. Delamarche, Lab Chip 7, 119 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Research Foundation - Flanders (FWO G086114 N), and the KU Leuven (OT 13/058, C3 project C32/17/007, C2 project C24/16/022).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeroen Lammertyn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Electronic supplementary material

(MP4 1045 kb)

(MP4 1227 kb)

(MP4 1146 kb)

(MP4 1524 kb)

ESM 1

(PDF 533 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dal Dosso, F., Kokalj, T., Belotserkovsky, J. et al. Self-powered infusion microfluidic pump for ex vivo drug delivery. Biomed Microdevices 20, 44 (2018). https://doi.org/10.1007/s10544-018-0289-1

Download citation

Keywords

  • Passive pump
  • Disposable pump
  • Infusion pump
  • Self-powered microfluidics
  • Lab-on-a-chip
  • Drug delivery